Early Diagnosis of KBG Syndrome Using Diagnostic Exome Sequencing (Diagnostic exome sequencing을 통한 KBG 증후군의 조기 진단)
-
- Journal of the Korean Child Neurology Society
- /
- v.26 no.4
- /
- pp.272-275
- /
- 2018
KBG syndrome is a rare neurodevelopmental disorder characterized by intellectual disability, skeletal anomalies, short stature, craniofacial dysmorphism, and macrodontia. ANKRD11 gene mutation and 16q24.3 microdeletion have been reported to cause KBG syndrome. Here, we report two patients with ANKRD11 mutations who initially presented with neurologic symptoms such as developmental delay and seizures. Patient 1 was a 23-month-old boy who presented with a global developmental delay. Language delay was the most dominant feature. He had hypertelorism, hearing impairment, and behavior problems characterized as hyperactivity. A c.1903_1907delAAACA (p.Lys635GInfsTer26) mutation in ANKRD11 was identified with diagnostic exome sequencing. Patient 2 was a 14-month-old boy with developmental delay and seizure. He also had atrial septum defect, and ventricular septal defect. Generalized tonic seizures began at the age of 8 months. Electroencephalography showed generalized sharp and slow wave pattern. Seizures did not respond to antiepileptic drugs. A loss of function mutation c.5350_5351delTC (p.ser1784HisfsTer12) in ANKRD11 was identified with diagnostic exome sequencing. In both cases, characteristic features of KBG syndrome such as short stature or macrodontia, were absent, and they visited the hospital due to neurological symptoms. These findings suggest that more patients with mild phenotypes of KBG syndrome are being recognized with advances in diagnostic exome sequencing genetic technologies.
Objectives: Obstructive sleep apnea syndrome is common and may produce various symptoms and serious complications. A substantial number of research articles on obstructive sleep apnea syndrome have been published in Korea. However, we found such limitations as lack of sufficient sample size and lack of polysomnography-proven cases. Therefore, we aimed at studying clinical features and sleep structure in a sufficient number of Korean patients with obstructive sleep apnea syndrome diagnostically confirmed with polysomnography. Methods: We studied 801 subjects referred to the Division of Sleep Studies, Seoul National University Hospital, who were diagnosed as having obstructive sleep apnea syndrome with polysomnography. Subjects were excluded if they had central sleep apnea syndrome, periodic limb movement disorder, narcolepsy or REM sleep behavior disorder. Foreign patients were also excluded. First of all, we studied the clinical features of the subjects. Secondly, we compared sleep-related parameters of the study subjects with those of age/sex-matched normal values. Thirdly, correlations of respiratory disturbance index (RDI) with each of the sleep-related parameters were calculated. Results: Among the 801 subjects, 668 were male subjects (83.4%) and 133 female subjects (16.4%). Their mean age was 46.6 years (
Three dimensional crustal structure and source features of earthquake hypocenters on the Korean peninsula were investigated using P and S-wave travel time tomography. The main goal of this research was to find Vp/Vs anomalies at earthquake hypocenters as well as those of crustal structure of basins and deep tectonic settings. This allowed fer the extrapolation of more detailed seismotectonic force from the Korean peninsula. The earthquake hypocenters were found to have high Vp/Vs ratio discrepancies (VRD) at the vertical sections. High V/p/Vs ratios were also found in the sedimentary basins and beneath the Chugaryong Rift Zone (CRZ), which was due to mantle plume that subsequently solidified with many fractures and faults which were saturated with connate water. The hypocenters of most earthquakes were found in the upper crust for Youngwol (YE), Kyongju (KE), Hongsung (HE), Kaesong (KSE), Daekwan (DKE), and Daehung (DHE) earthquakes, but near the subcrust or the Moho Discontinuity for Mt. Songni (SE), Sariwon (SRE) and Mt. Jiri (JE) earthquakes. Especially, we found hot springs of the Daekwan, Daehung and Unsan regions coincide with high VRD. Also, this cannot rule out the possibility that there are some partial meltings in the subcrust of this region. High VRD might indicate that many faults and fractures with connate water were dehydrated when earthquakes took place, reducing shear modulus in the hypocenter areas. This is can be explained by due to the fact that a point source which is represented by the moment tensor that may involve changes in volume, shear fracture, and rigidity. High Vp/Vs ratio discrepancies (VRD) were also found beneath Mt. Backdu beneath 40 km, indicating that magma chamber existed beneath Mt. Backdu is reducing shear modulus of S-wave velocity.
Geological sequestration of carbon dioxide (
The three-dimensional Tomography developed by Kim and Bae(2004) was applied to 64,024 P and 64,618 S wave arrival times observed at 238 seismic stations for 4050 local earthquakes in the depth range from 0 to 300 km in and around Hokkaido, Japan. High and low velocity zones for Vp/Vs were clearly imaged in and around Hokkaido. The upper seismic planes of the double seismic zone (DSZ) were found in the subducted Pacific Plate beneath Hokkaido at depth of 40- 80 km, which produced high seismicity around Hokkaido. The findings of high Vp/Vs anomalies beneath the Moho discontinuity supports an evidence of a surface triple-collision hypothesis prepared by Moriya(1994) that the Kuril Arc(Okhotsk Plate or North American Plate) is colliding against the NE Japanese Arc(Amurian Plate or Eurasian Plate), along and beneath the Hidaka Mountain Range, and at the same time the Pacific Plate is subducting into these two plates, making an equilibrium of tectonic forces along the Hikada Mountain Range (HMR) corner and the central tectonic axis(142 ~ 143E) in Hokkaido. The low Vp and Vs were also found in east and west along the central tectonic axis in which the focal mechanism represents the extensional forces. These phenomena are also consistent with low Bouguer gravity anomalies in this region. It is understood why most of great earthquakes occurred outside Hokkaido where the balance of tectonic forces are breaking from the triple junction of three tectonic forces in Hokkaido.
Attentional processes facilitate cognitive and behavioral performance in several ways. Attention serves to reduce the amount of information to receive. Attention enables humans to direct themselves to appropriate aspects of external environmental events and internal operations. Attention facilitates the selection of salient information and the allocation of cognitive processing appropriate to that information. Attention is not a unitary process that can be localized to a single neuroanatomical region. Before the cortical registration of sensory information, activation of important subcortical structures occurs, which is called as an orienting response. Once sensory information reaches the sensory cortex, a large number of perceptual processes occur, which provide various levels of perceptual resolution of the critical features of the stimuli. After this preattentional processing, information is integrated within higher cortical(heteromodal) systems in inferior parietal and temporal lobes. At this stage, the processing characteristics can be modified, and the biases of the system have a direct impact on attentional selection. Information flow has been traced through sensory analysis to a processing stage that enables the new information to be focused and modified in relation to preexisting biases. The limbic and paralimbic system play significant roles in modulating attentional response. It is labeled with affective salience and is integrated according to ongoing pressures from the motivational drive system of the hypothalamus. The salience of information greatly influences the allocation of attention. The frontal lobe operate response selection system with a reciprocal interaction with both the attention system of the parietal lobe and the limbic system. In this attentional process, the search with the spatial field is organized and a sequence of attentional responses is generated. Affective, motivational and appectitive impulses from limbic system and hypothalamus trigger response intention, preparation, planning, initiation and control of frontal lobe on this process. The reticular system, which produces ascending activation, catalyzes the overall system and increases attentional capacity. Also additional energetic pressures are created by the hypothalamus. As psychophysiological measurement, skin conductance, pupil diameter, muscle tension, heart rate, alpha wave of EEG can be used. Event related potentials also provide physiological evidence of attention during information process. NI component appears to be an electrophysiological index of selective attention. P3 response is developed during the attention related to stimulus discrimination, evaluation and response.
This study investigates the evolution of concrete damage due to chloride-induced steel corrosion through Impact-echo (IE) testing. Three reinforced concrete specimens, each measuring 1500 mm in length, 400 mm in width, and 200 mm in thickness, were fabricated using three concrete mixture proportions of blended cement types: ordinary Portland cement, ground granulated blast-furnace slag and fly ash. Steel corrosion in the concrete was accelerated by impressing a 0.5 A current following a 35-day cycle of wet-and-dry saturation in a 3% NaCl solution. Initial IE data collected during the saturation phase showed no significant changes, indicating that moisture had a minimal impact on IE signals and highlighting the slow progress of corrosion under natural conditions. Post-application of current, however, there was a noticeable decline in both IE peak frequency and the P-wave velocity in the concrete as the duration of the impressed current increased. Remarkably, progressive monitoring of IE proves highly effective in capturing the critical features of steel-corrosion induced concrete deterioration, such as the onset of internal damages and the rate of damage propagation. These results demonstrate the potential of progressive IE data monitoring to enhance the reliability of diagnosing and prognosticating the evolution of concrete damage in marine environment.
The aim of this study is to evaluate the reference value for electrocardiogram in healthy captive raccoon dogs. Forty-one free-ranging adult raccoon dogs rescued from Wildlife rescue centre, Kangwon National University were enrolled in this study. The 6-lead electrocardiogram was obtained in all raccoon dogs without any chemical restraints. The mean heart rate was
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70