• 제목/요약/키워드: p-type doping

검색결과 254건 처리시간 0.029초

N-Type c-Si 이종접합 태양전지 제작을 위한 a-Si:H(p) 가변 최적화 (A Study of Optimization a-Si:H(p) for n-type c-Si Heterojunction Solar Cell)

  • 허종규;윤기찬;최형욱;이영석;;김영국;이준신
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.77-79
    • /
    • 2009
  • Amorphous/crystalline silicon heterojunction solar cells, TCO/a-Si:H (p)/c-Si(n)/a-Si:H(n)/Al, are investigated. The influence of various parameters for the front structures was studied. We used thin (10 nm) a-Si:H(p) layers of amorphous hydrogenated silicon are deposited on top of a thick ($500{\mu}m$) crystalline c-Si wafer. This work deals with the influence of the a-Si:H(p) doping concentration on the solar cell performance is studied.

  • PDF

Ab initio Study for Electronic Property and Ferromagnetism of (Cu, N, or F)-codoped ZnO

  • Kang, Byung-Sub;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • 제17권3호
    • /
    • pp.163-167
    • /
    • 2012
  • The effects on the ferromagnetism of the O or Zn defect in Cu-doped ZnO with the concentration of 2.77-8.33% have been investigated by the first-principles calculations. The Cu doping in ZnO was calculated to be a kind of p-type ferromagnetic half-metals. When the Zn vacancy exists in Cu-doped ZnO, the Cu magnetic moment increases, while for the O vacancy it is reduced. It is noticeable that the ferromagnetic state was originated from the hybridized O(2p)-Cu(3d)-O(2p) chain formed through the p-d coupling. The carrier-mediated ferromagnetism by nitrogen or fluorine does not depend on their concentration.

갈륨인 단결정 성장으로 이룩한 적색 발광 다이오드의 제작 (The Fabrication of Gallium Phosphide Red Light Emitting Diode by Liquid Phase Epitaxy)

  • 김종국;민석기
    • 대한전자공학회논문지
    • /
    • 제10권3호
    • /
    • pp.1-9
    • /
    • 1973
  • 파일롯트 램프와 숫자표시를 목적으로 국내에서 처음으로 화합물반도체인 갈륨 인을 사용해서 발광다이오드를 만들었다. 이같이 만든 다이오드는 밝고 선명한 붉은 빛을 냈으며 발광하는데 필요한 순방향 바이아스 전류는 5mA 이하였다. 다이오드의 p-n 접합면은 n형 GaP 단결정 기판에 liquid phase epitaxy방법으로 성장시켰고 이때의 Ga 용액의 온도는 약 1300°K정도를 유지했다. 이렇게 하여 제조된 p-n 접합체에 wire bonding으로 ohmic contact시켜 다이오드를 제조했다. 칼륨인 발광다이오드는 매우 적은 전류로 발광되는 장점과 성장 반웅시 질소를 불순물로 doping시키면 녹색으로 발광되는 장점을 갖고 있으므로 앞으로 양산화의 전망이 매우 밝다.

  • PDF

다결정 3C-SiC 박막 다이오드의 전기적 특성 (Electrical characteristics of polycrystalline 3C-SiC thin film diodes)

  • 정귀상;안정학
    • 센서학회지
    • /
    • 제16권4호
    • /
    • pp.259-262
    • /
    • 2007
  • This paper describes the electrical characteristics of polycrystalline (poly) 3C-SiC thin film diodes, in which poly 3C-SiC thin films on n-type and p-type Si wafers, respectively, were deposited by APCVD using HMDS, $H_{2}$, and Ar gas at $1150^{\circ}C$ for 3 hr. The schottky diode with Au/poly 3C-SiC/Si (n-type) structure was fabricated. Its threshold voltage ($V_{bi}$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_{D}$) value were measured as 0.84 V, over 140 V, 61 nm, and $2.7{\times}10^{19}cm^{-3}$, respectively. Moreover, for the good ohmic contact, Al/poly 3C-SiC/Si (n-type) structure was annealed at 300, 400, and $500^{\circ}C$, respectively for 30 min under the vacuum condition of $5.0{\times}10^{-6}$ Torr. Finally, the p-n junction diodes fabricated on the poly 3C-Si/Si (p-type) were obtained like characteristics of single 3CSiC p-n junction diode. Therefore, poly 3C-SiC thin film diodes will be suitable for microsensors in conjunction with Si fabrication technology.

Novel Activation by Electrochemical Potentiostatic Method

  • 이학형;이준기;정동렬;권광우;김익현
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.29.1-29.1
    • /
    • 2009
  • Fabrication of good quality P-type GaN remained as a challenge for many years which hindered the III-V nitrides from yielding visible light emitting devices. Firstly Amano et al succeeded in obtaining P-type GaN films using Mg doping and post Low Energy Electron Beam Irradiation (LEEBI) treatment. However only few region of the P-GaN was activated by LEEBI treatment. Later Nakamura et al succeeded in producing good quality P-GaN by thermal annealing method in which the as deposited P-GaN samples were annealed in N2 ambient at temperatures above $600^{\circ}C$. The carrier concentration of N type and P-type GaN differs by one order which have a major effect in AlGaN based deep UV-LED fabrication. So increasing the P-type GaN concentration becomes necessary. In this study we have proposed a novel method of activating P-type GaN by electrochemical potentiostatic method. Hydrogen bond in the Mg-H complexes of the P-type GaN is removed by electrochemical reaction using KOH solution as an electrolyte solution. Full structure LED sample grown by MOCVD serves as anode and platinum electrode serves as cathode. Experiments are performed by varying KOH concentration, process time and applied voltage. Secondary Ion Mass Spectroscopy (SIMS) analysis is performed to determine the hydrogen concentration in the P-GaN sample activated by annealing and electrochemical method. Results suggest that the hydrogen concentration is lesser in P-GaN sample activated by electrochemical method than conventional annealing method. The output power of the LED is also enhanced for full structure samples with electrochemical activated P-GaN. Thus we propose an efficient method for P-GaN activation by electrochemical reaction. 30% improvement in light output is obtained by electrochemical activation method.

  • PDF

Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터 (p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process)

  • 이승민;장성철;박지민;윤순길;김현석
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

Photoluminescence property of Al,N-codoped p-type ZnO films by dc magnetron sputtering

  • Jin, Hu-Jie;Liu, Yan-Yan;Park, Bok-Kee;Park, Choon-Bae
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.419-420
    • /
    • 2008
  • In this study, high quality (Al,N)-codoped p-type ZnO thin films were obtained by DC magnetron sputtering. The film on buffer layer grown in 80% $N_2$ ambient shows highest hole concentration of $2.93\times10^{17}cm^{-3}$. The films show hole concentration in the range of $1.5\times10^{15}$ to $2.93\times10^{17}cm^{-3}$, resistivity of 131.2 to 2.864 $\Omega$cm, mobility of 3.99 to 31.6 $cm^2V^{-1}s^{-1}$. The films on Si show easier p-doping in ZnO than those on buffer layer. The film on Si shows the highest quality of optical photoluminescence (PL) characteristics. The donor energy level $(E_d)$ of (Al,N)-codoped ZnO films is about 50 meV and acceptor energy level $(E_a)$ is in the range of 63 to 71 meV. It will help to improve p-type ZnO films.

  • PDF

다결정 3C-SiC 박막 다이오드의 제작 (Fabrication of polycrystalline 3C-SiC thin film diodes)

  • 안정학;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.348-349
    • /
    • 2007
  • This paper describes the electrical characteristics of polycrystalline (poly) 3C-SiC thin film diodes, in which poly 3C-SiC thin films on n-type and p-type Si wafers, respectively, were deposited by APCVD using HMDS, Hz, and Ar gas at $1180^{\circ}C$ for 3 hr. The schottky diode with Au/poly 3C-SiC/Si(n-type) structure was fabricated. Its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) values were measured as 0.84 V, over 140 V, 61nm, and $2.7\;{\times}\;10^{19}\;cm^3$, respectively. The p-n junction diodes fabricated on the poly 3C-SiC/Si(p-type) were obtained like characteristics of single 3C-SiC p-n junction diodes. Therefore, poly 3C-SiC thin film diodes will be suitable microsensors in conjunction with Si fabrication technology.

  • PDF

Optical characteristics of p-type ZnO epilayers doped with Sb by metalorganic chemical vapor deposition

  • Kwon, B.J.;Cho, Y.H.;Choi, Y.S.;Park, S.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.122-122
    • /
    • 2010
  • ZnO is a widely investigated material for the blue and ultraviolet solid-state emitters and detectors. It has been promoted due to a wide-band gap semiconductor which has large exciton binding energy of 60 meV, chemical stability and low radiation damage. However, there are many problems to be solved for the growth of p-type ZnO for practical device applications. Many researchers have made an efforts to achieve p-type conductivity using group-V element of N, P, As, and Sb. In this letter, we have studied the optical characteristics of the antimony-doped ZnO (ZnO:Sb) thin films by means of photoluminescence (PL), PL excitation, temperature-dependent PL, and time-resolved PL techniques. We observed donor-to-acceptor-pair transition at about 3.24 eV with its phonon replicas with a periodic spacing of about 72 meV in the PL spectra of antimony-doped ZnO (ZnO:Sb) thin films at 12 K. We also investigate thermal activation energy and carrier recombination lifetime for the samples. Our result reflects that the antimony doping can generate shallow acceptor states, leading to a good p-type conductivity in ZnO.

  • PDF

Rutile Ti1-xCoxO2-δ p-type Diluted Magnetic Semiconductor Thin Films

  • Seong, Nak-Jin;Yoon, Soon-Gil;Cho, Young-Hoon;Jung, Myung-Hwa
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권3호
    • /
    • pp.149-153
    • /
    • 2006
  • An attempting to produce a p-type diluted magnetic semiconductor (DMS) using $Ti_{1-x}Co_xO_{2-\delta}-based$ thin films was made by suitable control of the deposition parameters including deposition temperature, deposition pressure, and doping level using a pulsed laser deposition method. T$Ti_{0.97}Co_{0.03}O_{2-\delta}-based$ (TCO) films deposited at $500^{\circ}C$ at a pressure of $5\times10^{-6}$ Torr showed an anomalous Hall effect with p-type characteristics. On the other hand, films deposited at $700^{\circ}C$ at $5\times10^{-6}$ Torr showed n-type behaviors by a decreased solubility of cobalt. The charge carrier concentration in the p-type TCO films was approximately $7.9\times10^{22}/cm^3$ at 300 K and the anomalous Hall effect in the p-type TCO films was controlled by a side-jump scattering mechanism. The magnetoresistance (MR), measured at 5 K in p-type TCO films showed a positive behavior in an applied magnetic field and the MR ratio was approximately 3.5 %. The successful preparation of p-type DMS using the TCO films has the potential for use in magnetic tunneling junction devices.