• 제목/요약/키워드: p-stacks

검색결과 32건 처리시간 0.025초

Bis(1,2-diaminopropane)palladium(Ⅱ) Bis(oxalato)palladate(Ⅱ)의 결정구조 (The Crystal Structure of Bis(1,2-diaminopropane)palladium(Ⅱ) Bis(oxalato)palladate(Ⅱ))

  • 김세환;남궁해;전호중
    • 대한화학회지
    • /
    • 제37권6호
    • /
    • pp.599-603
    • /
    • 1993
  • Bis(1,2-diaminopropane)palladium(II)-Bis(oxalato)palladate(II)($Pd_2C_{10}H_{10}N_{4}O_{8}$)의 단위 착이온 및 결정의 구조들을 X-선 회절법으로 연구하였다. 이 결정은 사방정계이고 공간군은 $P_{ccn}$ (군 번호 = 56)이다. 단위세포 길이는 a = 16.178(5), b = 16.381(6), c = $6.685(2)\AA$이며 Z=4이다. 회절 반점들의 세기는 흑연 단색화 장치가 있는 자동 4축 회절기로 얻었으며 $Mo-K\alpha$ X-선(${\lambda}$ = 0.7107 $\AA)$을 사용하였다. 구조분석은 중금속법으로 풀었으며, 최소자승법으로 정밀화하였고, 최종 신뢰도 값들은 605개의 회절반점에 대하여 R = 0.065, $R_W = 0.059, R_{all}$ = 0.065과 S = 4.315였다. 착이온들은 근본적으로 평면구조로써, 이들의 충진구조는 마그누스 염형태의 구조가 아니라, 착음이온의 면간 중첩거리가 $3.343(5)\AA$인 일차원 정규 음이온원주를 형성하고 있으며, 그 주위를 착양이온들이 둘러싸고 있다. 두 가지 착이온들 사이의 면간 각은 $18(1)^{\circ}$로써, 질소 및 산소원자들 사이의 직접적인 거리가 2.94(3)와 $3.31(4)\AA$ 사이의 수소결합으로 음이온 원주 주위에 양이온들이 둘러싸고 있다.

  • PDF

Electrodialysis with a channeled stack for high strength cadmium removal from wastewater

  • Kyung Jin, Min;Hyo Jin, An;Ah Hyun, Lee;Hyun-Gon, Shin;Ki Young, Park
    • Membrane and Water Treatment
    • /
    • 제14권1호
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, high concentrations of cadmium-containing wastewater were treated by electrodialysis (ED) with a channel stack. The limiting current density (LCD), cadmium removal efficiency, and current efficiency were investigated under each experimental condition according to the Reynolds number (Re), membrane area, and pH. With the increase in the film area to 111, 333, 555, and 777 cm2 at Re (109.1), LCDs decreased to 408.11, 44.45, 35.32, and 13.64 A/m2, respectively. The highest cadmium removal efficiency (99.6%) and current efficiency were obtained for the membrane area of 111 and 777 cm2, respectively. Under changing Re in the pH range of 1 to 4, Re and LCD were proportional under the same pH condition, and pH and LCD tended to be inversely proportional under the same Re condition. Cadmium removal rate was the best at the pH range 3 - 4. It has been found that ED with channeled stacks can be successfully applied to treat wastewater containing high concentrations of cadmium.

다층 다공성 실리콘의 합성과 그 광학적 특성 조사 (Synthesis and Optically Characterization of Bragg Structure Porous Silicon)

  • 김성기
    • 통합자연과학논문집
    • /
    • 제2권1호
    • /
    • pp.45-49
    • /
    • 2009
  • Electrochemical etching of heavily doped p-type silicon wafers (boron doped, <100> orientation, resistivity; $0.8-1.2m{\Omega}/cm$) with different current density resulting two different refractive indices resulted in DBR (Distributed Bragg Reflectors) porous silicon, which exhibited strong in-plane anisotropy of refractive index (birefringence). Dielectric stacks of birefringent porous silicon acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in depth) variation of the refraction index. Optical characteristics of DBR porous silicon were investigated.

  • PDF

Issues Related to the Modeling of Solid Oxide Fuel Cell Stacks

  • Yang Shi;Ramakrishna P.A.;Sohn Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.391-398
    • /
    • 2006
  • This work involves a method for modeling the flow distribution in the stack of a solid oxide fuel cell. Towards this end, a three dimensional modeling of the flow through a Solid Oxide Fuel Cell (SOFC) stack was carried out using the CFD analysis. This paper examines the efficacy of using cold flow analysis to describe the flow through a SOFC stack. It brings out the relative importance of temperature effect and the mass transfer effect on the SOFC manifold design. Another feature of this study is to utilize statistical tools to ascertain the extent of uniform flow through a stack. The results showed that the cold flow analysis of flow through SOFC might not lead to correct manifold designs. The results of the numerical calculations also indicated that the mass transfer across membrane was essential to correctly describe the cathode flow, while only temperature effects were sufficient to describe the anode flow in a SOFC.

Complementary FET로 열어가는 반도체 미래 기술 (Complementary FET-The Future of the Semiconductor Transistor)

  • 김상훈;이성현;이왕주;박정우;서동우
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.52-61
    • /
    • 2023
  • With semiconductor scaling approaching the physical limits, devices including CMOS (complementary metal-oxide-semiconductor) components have managed to overcome yet are currently struggling with several technical issues like short-channel effects. Evolving from the process node of 22 nm with FinFET (fin field effect transistor), state-of-the-art semiconductor technology has reached the 3 nm node with the GAA-FET (gate-all-around FET), which appropriately addresses the main issues of power, performance, and cost. Technical problems remain regarding the foundry of GAA-FET, and next-generation devices called post-GAA transistors have not yet been devised, except for the CFET (complementary FET). We introduce a CFET that spatially stacks p- and n-channel FETs on the same footprint and describe its structure and fabrication. Technical details like stacking of nanosheets, special spacers, hetero-epitaxy, and selective recess are more thoroughly reviewed than in similar articles on CFET fabrication.

Cytohistological study of the leaf structures of Panax ginseng Meyer and Panax quinquefolius L.

  • Lee, Ok Ran;Nguyen, Ngoc Quy;Lee, Kwang Ho;Kim, Young Chang;Seo, Jiho
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.463-468
    • /
    • 2017
  • Background: Both Panax ginseng Meyer and Panax quinquefolius are obligate shade-loving plants whose natural habitats are broadleaved forests of Eastern Asia and North America. Panax species are easily damaged by photoinhibition when they are exposed to high temperatures or insufficient shade. In this study, a cytohistological study of the leaf structures of two of the most well-known Panax species was performed to better understand the physiological processes that limit photosynthesis. Methods: Leaves of ginseng plants grown in soil and hydroponic culture were sectioned for analysis. Leaf structures of both Panax species were observed using a light microscope, scanning electron microscope, and transmission electron microscope. Results: The mesostructure of both P. ginseng and P. quinquefolius frequently had one layer of non-cylindrical palisade cells and three or four layers of spongy parenchymal cells. P. quinquefolius contained a similar number of stomata in the abaxial leaf surface but more tightly appressed enlarged grana stacks than P. ginseng contained. The adaxial surface of the epidermis in P. quinquefolius showed cuticle ridges with a pattern similar to that of P. ginseng. Conclusion: The anatomical leaf structure of both P. ginseng and P. quinquefolius shows that they are typical shade-loving sciophytes. Slight differences in chloroplast structure suggests that the two different species can be authenticated using transmission electron microscopy images, and light-resistant cultivar breeding can be performed via controlling photosynthesis efficiency.

Optical and Electrical Properties of InAs Sub-Monolayer Quantum Dot Solar Cell

  • 한임식;박동우;노삼규;김종수;김진수;김준오
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.196.2-196.2
    • /
    • 2013
  • 본 연구에서는 분자선 에피택시 (MBE)법으로 성장된 InAs submonolayer quantum dot (SML-QD)을 태양전지에 응용하여 광학 및 전기적 특성을 평가하였다. 본 연구에서 사용된 양자점 태양전지(quantum dot solar cell, QDSC)의 구조는 n+-GaAs 기판 위에 n+-GaAs buffer와 n-GaAs base layer를 차례로 성장 한 후, 활성영역에 InAs/InGaAs SML-QD와 n-GaAs spacer layer를 8주기 형성하였다. 그 위에 p+-GaAs emitter, p+-AlGaAs window layer를 성장하고 ohmic contact을 위하여 p+-GaAs 를 성장하였다. SML-QD 구조의 두께는 0.3 ML 이며, 이때 SML-QD의 적층수를 4 stacks 으로 고정하였다. SML-QD 와의 비교를 위하여 2.0 ML크기의 InAs자발 형성 양자점 태양전지(SK-QDSC)과 GaAs 단일 접합 태양전지 (reference-SC)를 동일한 성장조건에서 제작하였다. PL 측정 결과, 300 K에서 SML-QD의 발광 피크는 SK-QD 보다 고에너지에서 나타나는데(1.349 eV), 이것은 SML-QD가 SK-QD보다 작은 크기를 가지기 때문으로 사료된다. SML-QD는 single peak를 보이는 반면, SK-QD는 dual peaks (1.112 / 1.056 eV)을 확인하였다. SML-QD의 반치폭(full width at half maximum, FWHM)이 SK-QD에 비하여 작은 것으로 보아 SML-QD가 SK-QD보다 양자점 크기 분포의 균일도가 높은 것으로 해석된다. Illumination I-V 측정 결과, SML-QDSC의 개방 전압(VOC) 과 단락전류밀도(JSC)는 SK-QDSC의 값과 비교해 보면, 각각 47 mV와 0.88 mA/cm2만큼 증가하였다. 이는 SK-QD보다 상대적으로 작은 크기를 가진 SML-QD로 인해 VOC가 증가되었으며, SML-QD가 SK-QD 보다 태양광을 흡수할 수 있는 영역이 비교적 적지만, QD내에 존재하는 energy level에서 탈출 할 수 있는 확률이 더 높음으로써 JSC가 증가한 것으로 분석 된다.

  • PDF

고효율 단결정 Si 태양전지 제작을 위한 은 페이스트의 제조 및 열 공정 최적화 (Manufacturing and Thermal Process Optimization of Ag-paste for Fabricating High Efficiency Mono-Si Solar Cell)

  • 피지희;김성진;손창록;권순용
    • 한국전기전자재료학회논문지
    • /
    • 제26권2호
    • /
    • pp.144-150
    • /
    • 2013
  • A New Ag-pastes were developed for integrating the high efficiency mono-Si solar cell. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 3 wt% additives. After fabricating the Ag-pastes by using a 3-roll mill, they were coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. And the post-thermal process was also optimized by varying the process conditions of peak temperature. The optimized solar cell efficiency on a 6-inch mono-Si wafer was 18.28%, which was the one of the world best performances. It meaned that the newly developed Ag-paste could be adopted to fabricate a commercial bulk Si solar cell.

단결정 Si 태양전지 적용을 위해 제조된 무연 은 페이스트의 열 공정 최적화 및 전기적 특성 평가 (Thermal Process Optimization of Pb-free Ag-paste and Evaluation of Electrical Properties in Mono-Si Solar Cell)

  • 정지현;김성진;손창록;어순철;권순용
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.844-849
    • /
    • 2011
  • Two kind of Ag-pastes were prepared for integrating the bulk Si solar cell. One is the Ag-paste with Pb-based glass frit and the other is that with Bi-based glass frit. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 2 wt% additives. After fabricating the Ag-pastes, they was coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. The solar cell efficiency was 17.6% in the case of the Pb-based Ag-paste. However that was 16.2% in the solar cell integrated with the Bi-based Ag-paste. The lower performance in Bi-based Ag-paste was caused by the higher series resistance and the lower shunt resistance in comparison with the Pb-based Ag-paste.

Electrical characteristics of poly-Si NVM by using the MIC as the active layer

  • Cho, Jae-Hyun;Nguyen, Thanh Nga;Jung, Sung-Wook;Yi, Jun-Sin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.151-151
    • /
    • 2010
  • In this paper, the electrically properties of nonvolatile memory (NVM) using multi-stacks gate insulators of oxide-nitride-oxynitride (ONOn) and active layer of the low temperature polycrystalline silicon (LTPS) were investigated. From hydrogenated amorphous silicon (a-Si:H), the LTPS thin films with high crystalline fraction of 96% and low surface's roughness of 1.28 nm were fabricated by the metal induced crystallization (MIC) with annealing conditions of $650^{\circ}C$ for 5 hours on glass substrates. The LTPS thin film transistor (TFT) or the NVM obtains a field effect mobility of ($\mu_{FE}$) $10\;cm^2/V{\cdot}s$, threshold voltage ($V_{TH}$) of -3.5V. The results demonstrated that the NVM has a memory window of 1.6 V with a programming and erasing (P/E) voltage of -14 V and 14 V in 1 ms. Moreover, retention properties of the memory was determined exceed 80% after 10 years. Therefore, the LTPS fabricated by the MIC became a potential material for NVM application which employed for the system integration of the panel display.

  • PDF