• Title/Summary/Keyword: p-doping

Search Result 609, Processing Time 0.036 seconds

Study of P-type Wafer Doping for Solar Cell Using Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 P타입 태양전지 웨이퍼 도핑 연구)

  • Yun, Myoungsoo;Jo, Taehun;Park, Jongin;Kim, Sanghun;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi-Chung
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.120-123
    • /
    • 2014
  • Thermal doping method using furnace is generally used for solar-cell wafer doping. It takes a lot of time and high cost and use toxic gas. Generally selective emitter doping using laser, but laser is very high equipment and induce the wafer's structure damage. In this study, we apply atmospheric pressure plasma for solar-cell wafer doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (1 kHz ~ 100 kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer (120 ohm/square). SIMS (Secondary Ion Mass Spectroscopy) are used for measuring wafer doping depth and concentration of phosphorus. We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

p-Type Doping of Epitaxial Graphene by p-tert-Butylcalix[4]arene

  • Park, Sun-Min;Yang, Se-Na;Kim, Ki-Jeong;No, Kwang-Hyun;Lee, Hang-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2809-2812
    • /
    • 2010
  • The Chemical Doping of epitaxial graphene (EG) due to p-tert-butylcalix[4]arene was investigated using high resolution photoemission spectroscopy (HRPES). The measured work function changes verified that increased adsorption of the p-tert-butylcalix[4]arene on EG showed p-type doping characteristics due to charge transfer from the graphene to the p-tert-butylcalix[4]arene through the hydroxyl group. A single oxygen bonding feature associated with the O 1s peak was clearly observed in the core-level spectra, indicating the presence of one equivalent adsorption state.

Optimization of 4H-SiC Superjunction Accumulation MOSFETs by Adjustment of the Thickness and Doping Level of the p-Pillar Region (p-Pillar 영역의 두께와 농도에 따른 4H-SiC 기반 Superjunction Accumulation MOSFET 소자 구조의 최적화)

  • Jeong, Young-Seok;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.345-348
    • /
    • 2017
  • In this work, static characteristics of 4H-SiC SJ-ACCUFETs were obtained by adjusting the p-pillar region. The structure of this SJ-ACCUFET was designed by using a two-dimensional simulator. The static characteristics of SJ-ACCUFET, such as the breakdown voltages, on-resistance, and figure of merits, were obtained by varying the p-pillar doping concentration from $1{\times}10^{15}cm^{-3}$ to $5{\times}10^{16}cm^{-3}$ and the thickness from $0{\mu}m$ to $9{\mu}m$. The doping concentration and the thickness of p-pillar region are closely related to the break down voltage and on-resistance and threshold voltages. Hence a silicon carbide SJ-ACCUFET structure with highly intensified breakdown voltages and low on-resistances with good figure of merits can be achieved by optimizing the p-pillar thickness and doping concentration.

2D transition-metal dichalcogenide (WSe2) doping methods for hydrochloric acid

  • Nam, Hyo-Jik;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.291.2-291.2
    • /
    • 2016
  • 3D semiconductor material of silicon that is used throughout the semiconductor industry currently faces a physical limitation of the development of semiconductor process technology. The research into the next generation of nano-semiconductor materials such as semiconductor properties superior to replace silicon in order to overcome the physical limitations, such as the 2-dimensional graphene material in 2D transition-metal dichalcogenide (TMD) has been researched. In particular, 2D TMD doping without severely damage of crystal structure is required different conventional methods such as ion implantation in 3D semiconductor device. Here, we study a p-type doping technique on tungsten diselenide (WSe2) for p-channel 2D transistors by adjusting the concentration of hydrochloric acid through Raman spectroscopy and electrical/optical measurements. Where the performance parameters of WSe2 - based electronic device can be properly designed or optimized. (on currents increasing and threshold voltage positive shift.) We expect that our p-doping method will make it possible to successfully integrate future layered semiconductor devices.

  • PDF

Subthreshold characteristics of Submicron pMOSFET by Computer Simulation (컴퓨터 시뮬레이션에 의한 서브마이크론 pMOSFET의 Subthreshold 특성 고찰)

  • 신희갑;이철인;서용진;김태형;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.210-215
    • /
    • 1994
  • In the CMOS device, Counter doping is needed to adjust threshold voltage because of the difference between n-MOSFET and p-MOSFET well doping concentration when n+ polysilicon gate is used. Therefore buried channel is formed in the p-channel MOSFET degrading properties. So well doping concentration and doping condition should be considered in fabrication process and device design. Here we are to extract the initial process condition using simulation and fabricate p-MOSFET device and then compare the subthreshold characteristics of simulated and fabricated device.

Doping Effects of Water-Soluble Poly(3-thiopheneacetic acid) (P3TAA) and its Gel

  • Kim, Byoung-Suhk;Li Chen;Gong, Jian-Ping;Yoshihito Osada
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.116-119
    • /
    • 2000
  • The doping behaviors of water-soluble poly(3-thiopheneacetic acid) (P3TAA) and ie gel using I$_2$and concentrated HCIO$_4$aqueous solutions were investigated by UV-Visible absorption spectrometer. Electrical conductivity of tile doped polyhiophene gel was also studied. I$_2$-doping of water-soluble P3TAA gave rise to a new broad polaron peak at around 749 nm, which corresponds to localization of electron. It was found that doping ability of P3TAA gel was strikingly dependent on the concentration of HCIQ solution.

  • PDF

Effects of Phosphorous-doping on Electrochemical Performance and Surface Chemistry of Soft Carbon Electrodes

  • Kim, Min-Jeong;Yeon, Jin-Tak;Hong, Kijoo;Lee, Sang-Ick;Choi, Nam-Soon;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2029-2035
    • /
    • 2013
  • The impact of phosphorous (P)-doping on the electrochemical performance and surface chemistry of soft carbon is investigated by means of galvanostatic cycling and ex situ X-ray photoelectron spectroscopy (XPS). P-doping plays an important role in storing more Li ions and discernibly improves reversible capacity. However, the discharge capacity retention of P-doped soft carbon electrodes deteriorated at $60^{\circ}C$ compared to non-doped soft carbon. This poor capacity retention could be improved by vinylene carbonate (VC) participating in forming a protective interfacial chemistry on soft carbon. In addition, the effect of P-doping on exothermic thermal reactions of lithiated soft carbon with electrolyte solution is discussed on the basis of differential scanning calorimetry (DSC) results.

The effect of surface texturization on the thermal and electric characteristics of photovoltaic devices (표면 texturizaton에 따른 photovoltaic device의 열적 전기적 특성)

  • Jung, Ji-Chul;Jung, Byung-Eon;Lee, Jung-Ho;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.133-133
    • /
    • 2010
  • We studied the thermal and electric effect of 2D and 3D p-n photovoltaic diode structures with and without surface texturing. By analyzing the numerical simulation results of I-V characteristics and lattice temperature distributions, we systematically studied the effect of different texturing structures and different doping concentration on the characteristics of the silicon p-n photovoltaic devices. The, efficiency of the device with the surface texturing shows more than ~ 2% enhancement compared to the reference devices without texturing. The tendency of the efficiency of doping concentration has been studied with boron doping of $10^{14}{\sim}10^{17}cm^{-3}$ and phosphorus doping of $10^{15}cm^{-3}$. In addition to that, the study of changing phosphorus doping of $10^{15}{\sim}10^{18}cm^{-3}$ with boron doping of $10^{14}cm^{-3}$ has been examined. It has been shown that the texturing structure not only improves the light trapping but also plays an important role in the heat radiation.

  • PDF

Simultaneous Analysis of Stimulants and Narcotic Analgesics by Capillary Column Gas Chromatography with Nitrogen Phosphorus Detector (Capillary Column Gas Chromatography/Nitrogen Phosphorus Detector를 이용한 흥분제 및 마약성 진통제의 동시분석에 관한 연구)

  • Lho, Dong-Seok;Shin, Ho-Sang;Kang, Bo-Kyung;Paek, Heang-Kee;Kim, Seung-Ki;Lee, Jeong-Ae;Kim, Young-Lim;Park, Jong-Sei
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.659-666
    • /
    • 1991
  • A systematic analysis of 18 stimulants and narcotic analgesics containing nitrogen atom (s) in human urine by gas chromatography with nitrogen phosphorus detector (GC-NPD), is described. The urinary extract with diethyl ether at pH 8.5 showed good recoveries of the drugs and less interference peaks on GC chromatogram. Retention data were standardized by the calculation of relative retention times using diphenylamine as the internal standard. The relative standard deviations of retention times were less than 0.1% for the within-run analyses. The response factor (RRF) of a drug relative to the internal standard was calculated. RRF decreased with increasing number of nitrogen atoms. This technique can be adapted to various analytical toxicology problems.

  • PDF

High Efficiency of Thin Film Silicon Solar Cell by using ASA Program (ASA 프로그램을 이용한 박막태양전지의 고효율화 방안)

  • Park, Jong-Young;Lee, Young-Seok;Heo, Jong-Kyu;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.437-438
    • /
    • 2008
  • 박막태양전지에서 p-layer, i-layer, n-layer의 thickness와 doping concentration은 가장 기본이 되는 요소이다. 각 layer에서 위 두 가지 요소를 ASA simulator를 이용해서 높은 효율을 갖는 박막태양전지를 설계하기 위해 조절하였다. Simulation결과 p-layer의 thickness는 $9.5*10^{-9}m$, doping concentration은 0.2eV, i-layer의 thickness는 $4.535*10^{-7}m$, n-layer의 thickness는 $2*10^{-8}m$, doping concentration 은 0.1eV에서 최종 11.48%의 효율을 얻을 수 있었다. 본 연구를 통하여 높은 효율의 박막태양전지 설계 시에 도움이 될 수 있을 것이다.

  • PDF