• Title/Summary/Keyword: p-cycle

Search Result 2,465, Processing Time 0.034 seconds

Adaptation of p-Cycle considering QoS Constraints in WDM Networks (WDM 망에서 QoS 제약 조건을 고려한 p-Cycle 적용 방안)

  • Shin, Sang-Heon;Shin, Hae-Joon;Kim, Young-Tak
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.5
    • /
    • pp.668-675
    • /
    • 2003
  • In this paper, we propose an enhanced p-cycle (preconfigured protection cycle) scheme for WDM mesh networks with QoS constraints. In the previous researches on p-cycle, it is assumed that user's connection has a hi-directional connectivity and the same bandwidth on both direction. Therefore it is difficult to apply p-cycle based link protection to uni-directional connections for multicasting or asymmetric broadband multimedia communications with hi-directional connectivity. And it didn't consider QoS of backup path. We enhanced the p-cycles to accomodate uni-directional connections for multicasting or asymmetric bandwidth communications with hi-directional connectivity. And we propose a selection procedure of p-cycle to assure QoS of backup path. We were able to reduce a required backup bandwidth by applying a uni-directional p-cycle concept to asymmetric broadband multimedia communication environment. The proposed p-cycle selection procedure is applied to the U.S. sample network to evaluate whether the configured p-cycles can support QoS constraint of working path and backup path.

Comparison and Analysis of P2P Botnet Detection Schemes

  • Cho, Kyungsan;Ye, Wujian
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.69-79
    • /
    • 2017
  • In this paper, we propose our four-phase life cycle of P2P botnet with corresponding detection methods and the future direction for more effective P2P botnet detection. Our proposals are based on the intensive analysis that compares existing P2P botnet detection schemes in different points of view such as life cycle of P2P botnet, machine learning methods for data mining based detection, composition of data sets, and performance matrix. Our proposed life cycle model composed of linear sequence stages suggests to utilize features in the vulnerable phase rather than the entire life cycle. In addition, we suggest the hybrid detection scheme with data mining based method and our proposed life cycle, and present the improved composition of experimental data sets through analysing the limitations of previous works.

Effects of Amifostine on Apoptosis, Cell Cycle and Cytoprotection of Human Colon Cancer Cell Lines

  • Eun Ju Lee
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.287-295
    • /
    • 2023
  • Amifostine was developed to protect cells, but it is known to induce cytotoxicity and apoptosis, and the exact mechanism is unknown. In this study, we investigated how the DNA mismatch repair (MMR) system interacts with p53 to prevent apoptosis, cell cycle arrest, and cytoprotective effects induced by amifostine. HCT116 colon cancer cells sublines HCT116/p53+,HCT116/p53+, HCT116/p53-, HCT116/E6 and HCT116+ch3/E6 cells were used for evaluation. Amifostine induced G1 arrest and increased toxicity two-fold in p53- cells regardless of MMR expression. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Amifostine induced the expression of p21 protein in both p53+ and p53- cells. As for apoptosis, compared to p53- cells, p53+ cells showed 3.5~4.2 times resistance to amifostine-induced apoptosis. HCT116+E6 with both p53 and MMR loss showed maximum apoptosis at 48 h, and HCT116+ch3/E6HCT116+ch3/E6 with p53 loss showed maximum apoptosis at 24 h. As a result, it was confirmed through in vitro experiments that amifostine-induced G1 cell cycle arrest and apoptosis are mediated through a pathway dependent on MMR and p53 protein.

Enhanced p-Cycles for WDM Optical Network with Limited Wavelength Converters (제한된 광 파장변환 기능을 가지는 WDM망을 고려한 개선된 p-Cycle 기법)

  • Shin, Sang-Heon;Shin, Hae-Joon;Kim, Young-Tak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3B
    • /
    • pp.200-208
    • /
    • 2003
  • In this paper, we propose an enhanced p-cycles (preconfigured protection cycles) scheme for fast restoration in WDM (Wavelength Division Multiplexing) optical mesh network with limited wavelength conversion for fast restoration. We enhanced the p-cycles to accommodate uni-directional connections to be used in uni-directional multicasting or asymmetric broadband multimedia communications with bi-directional connectivity. We applied it to WDM network with limited wavelength conversion and analyzed the result. The analysis results show that the enhanced p-cycle algorithm provides better performance in WDM optical networks with limited wavelength converter.

Role of Intracellular Calcium in Clotrimazole-Induced Alteration of Cell Cycle Inhibitors, p53 and p27, in HT29 Human Colon Adenocarcinoma Cells

  • Thapa, Dinesh;Kwon, Jun-Bum;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • Clotrimazole (CLT), a potent antifungal drug, is known to inhibit tumor cell proliferation. In the present study, we examined the role of intracellular $Ca^{2+}$ in CLT-induced cell cycle arrest of colon adenocarcinoma HT29 cells. CLT inhibited growth of HT29 cells in a concentration-dependent manner, which was associated with inhibition of cell cycle progression at the G(1)-S phase transition and an increase in the expression of cell cycle inhibitor proteins p27 and p53. CLT also suppressed the $Ca^{2+}$ overload by A23187, a calcium ionophore, suggesting its role in modulation of intracellular $Ca^{2+}$ concentration in HT29 cells. The simultaneous application of CLT and A23187 with addition of $CaCl_2$ (1mM) to the medium significantly reversed CLT-induced p27 and p53 protein level increase and growth suppression. Our results suggest that CLT induces cell cycle arrest of colon adenocarcinoma HT29 cells via induction of p27 and p53, which may, at least in part, be mediated by alteration of intracellular $Ca^{2+}$ level.

Retinoic Acid Increases the Cell Cycle Progression of Human Gingival Fibroblasts by Increasing Cyclin E and CDK 2 Expression and Decreasing $p21^{WAF1/CIP1}$ and $p16^{INK4A}$ Expression

  • You, Hyung-Keun;Seo, Se-Jeong;Kim, Kang-Ju;Choi, Na-Young;You, Yong-Ouk
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.115-120
    • /
    • 2012
  • Retinoic acid plays an important role in the regulation of cell growth and differentiation. In our present study, we evaluated the effects of all-trans retinoic acid (RA) on cell proliferation and on the cell cycle regulation of human gingival fibroblasts (HGFs). Cell proliferation was assessed using the MTT assay. Cell cycle analysis was performed by flow cytometry, and cell cycle regulatory proteins were determined by western blot. Cell proliferation was increased in the presence of a 0.1 nM to 1 ${\mu}M$ RA dose range, and maximal growth stimulation was observed in cells exposed to 1 nM of RA. Exposure of HGFs to 1 nM of RA resulted in an augmented cell cycle progression. To elucidate the molecular mechanisms underlying cell cycle regulation by RA, we measured the intracellular levels of major cell cycle regulatory proteins. The levels of cyclin E and cyclin-dependent kinase (CDK) 2 were found to be increased in HGFs following 1 nM of RA treatment. However, the levels of cyclin D, CDK 4, and CDK 6 were unchanged under these conditions. Also after exposure to 1 nM of RA, the protein levels of $p21^{WAF1/CIP1}$ and $p16^{INK4A}$ were decreased in HGFs compared with the control group, but the levels of p53 and pRb were similar between treated and untreated cells. These results suggest that RA increases cell proliferation and cell cycle progression in HGFs via increased cellular levels of cyclin E and CDK 2, and decreased cellular levels of $p21^{WAF1/CIP1}$ and $p16^{INK4A}$.

NADPH oxidase inhibitor diphenyleneiodonium induces p53 expression and cell cycle arrest in several cancer cell lines (NADPH oxidase 저해제인 diphenyleneiodonium의 p53 발현 및 암세포의 성장억제에 대한 연구)

  • Jo, Hong-Jae;Kim, Kang-Mi;Song, Ju-Dong;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.778-782
    • /
    • 2007
  • The Diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the cell growth progression of human colon cancer cells HCT-116 (wild-type p53), HT-29 (p53 mutant) and human breast cancer cells MCF-7 (wild-type p53). DPI treatment in cancer cells evoked a dose- and time-dependent growth inhibition, and also induced the cell cycle arrest in C2/M phase. The peak of cell population arrested in C2/M phase was observed at12 hr after treatment of DPI. In addition, DPI significantly induced the expression of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest, at 6 hr in DPI-stimulated cells. However, a catechol apocynin, which inhibits the assembly of NADPH oxidase, did not induce p53 expression. This suggest that p53 expression induced by DPI is not associated with the inhibition of NADPH oxidase. In conclusion, we suggest that DPI induces the expression of wild-type p53 by ROS-in-dependent mechanism in several cancer cells, and upregulated p53 may be involved in regulatory mechanisms for growth inhibition and cell cycle arrest at C2/M phase in DPI-stimulated cells.

Cell Cycle Arrest Effects by Artemisia annua Linné in Hep3B Liver Cancer Cell (Hep3B 간암세포에서 개똥쑥 추출물에 의한 Cell Cycle Arrest 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Kim, Sang Yong;Ha, Sung Ho;Kim, Young Min;Yoo, Je-Geun
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.175-181
    • /
    • 2015
  • Cells proliferate via repeating process that growth and division. This process is G1, S, G2 and M four phases consists. Monitoring the progression of the cell cycle is a specific step that to be a continuous process is repeated to adjust the start of the next step. At this time, this process is called a Checkpoint. Currently, there are three known checkpoints that G1-S phase, G2-M phase, and the M phase. In this study, we confirmed that cell cycle arrest effects by ethanol extracts of Artemisia annua Linne (AAE) in Hep3B liver cancer cells. AAE was regulated proteins which involved in cell cycle such as pAkt, pMDM2, p53, p21, pCDK2 (T14/Y15). AAE induced cell cycle arrest in G1 checkpoint through phosphorylation of CDK2. Akt and p53 upstream is inhibited by AAE and p53 activated by non-activated pMDM2, p53 inhibitor. Thereby, activated p53 is transcript to p21 and activated p21 protein is combined with Cyclin E-pCDK2 complex. Therefore, we confirmed that AAE-induced cell cycle arrest was occurred by p21-Cyclin E-pCDK2 complex by inhibition of pAkt signal. Because of this cell cycle can't pass to S phase from G1 phase.

THE CHROMATIC POLYNOMIAL FOR CYCLE GRAPHS

  • Lee, Jonghyeon;Shin, Heesung
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.525-534
    • /
    • 2019
  • Let $P(G,{\lambda})$ denote the number of proper vertex colorings of G with ${\lambda}$ colors. The chromatic polynomial $P(C_n,{\lambda})$ for the cycle graph $C_n$ is well-known as $$P(C_n,{\lambda})=({\lambda}-1)^n+(-1)^n({\lambda}-1)$$ for all positive integers $n{\geq}1$. Also its inductive proof is widely well-known by the deletion-contraction recurrence. In this paper, we give this inductive proof again and three other proofs of this formula of the chromatic polynomial for the cycle graph $C_n$.

Multicasting Multiple Description Coding Using p-cycle Network Coding

  • Farzamnia, Ali;Syed-Yusof, Sharifah K.;Fisal, Norsheila
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3118-3134
    • /
    • 2013
  • This paper deliberates for a multimedia transmission scheme combining multiple description coding (MDC) and network coding (NC). Our goal is to take advantage from the property of MDC to provide quantized and compressed independent and identically distributed (iid) descriptions and also from the benefit of network coding, which uses network resources efficiently to recover lost data in the network. Recently, p-cycle NC has been introduced to recover and protect any lost or distorted descriptions at the receiver part exactly without need of retransmission. So far, MDC have not been explored using this type of NC. Compressed and coded descriptions are transmitted through the network where p-cycle NC is applied. P-cycle based algorithm is proposed for single and multiple descriptions lost. Results show that in the fixed bit rate, the PSNR (Peak Signal to Noise Ratio) of our reconstructed image and also subjective evaluation is improved significantly compared to previous work which is averaging method joint with MDC in order to conceal lost descriptions.