• 제목/요약/키워드: p-ERK

검색결과 858건 처리시간 0.033초

Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells

  • Joo, Donghyun;Woo, Jong Soo;Cho, Kwang-Hyun;Han, Seung Hyun;Min, Tae Sun;Yang, Deok-Chun;Yun, Cheol-Heui
    • BMB Reports
    • /
    • 제49권4호
    • /
    • pp.220-225
    • /
    • 2016
  • Cancer cells have different characteristics due to the genetic differences where these unique features may strongly influence the effectiveness of therapeutic interventions. Here, we show that the spontaneous reactivation of extracellular signalregulated kinase (ERK), distinct from conventional ERK activation, represents a potent mechanism for cancer cell survival. We studied ERK1/2 activation in vitro in SW480 colorectal cancer cells. Although ERK signaling tends to be transiently activated, we observed the delayed reactivation of ERK1/2 in epidermal growth factor (EGF)-stimulated SW480 cells. This effect was observed even after EGF withdrawal. While phosphorylated ERK1/2 translocated into the nucleus following its primary activation, it remained in the cytoplasm during late-phase activation. The inhibition of primary ERK1/2 activation or protein trafficking, blocked reactivation and concurrently increased caspase 3 activity. Our results suggest that the biphasic activation of ERK1/2 plays a role in cancer cell survival; thus, regulation of ERK1/2 activation may improve the efficacy of cancer therapies that target ERK signaling.

The p90rsk-mediated signaling of ethanol-induced cell proliferation in HepG2 cell line

  • Kim, Han Sang;Kim, Su-Jin;Bae, Jinhyung;Wang, Yiyi;Park, Sun Young;Min, Young Sil;Je, Hyun Dong;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.595-603
    • /
    • 2016
  • Ribosomal S6 kinase is a family of serine/threonine protein kinases involved in the regulation of cell viability. There are two subfamilies of ribosomal s6 kinase, (p90rsk, p70rsk). Especially, p90rsk is known to be an important downstream kinase of p44/42 MAPK. We investigated the role of p90rsk on ethanol-induced cell proliferation of HepG2 cells. HepG2 cells were treated with 10~50 mM of ethanol with or without ERK and p90rsk inhibitors. Cell viability was measured by MTT assay. The expression of pERK1, NHE1 was measured by Western blots. The phosphorylation of p90rsk was measured by ELISA kits. The expression of Bcl-2 was measured by qRT-PCR. When the cells were treated with 10~30 mM of ethanol for 24 hour, it showed significant increase in cell viability versus control group. Besides, 10~30 mM of ethanol induced increased expression of pERK1, p-p90rsk, NHE1 and Bcl-2. Moreover treatment of p90rsk inhibitor attenuated the ethanol-induced increase in cell viability and NHE1 and Bcl-2 expression. In summary, these results suggest that p90rsk, a downstream kinase of ERK, plays a stimulatory role on ethanol-induced hepatocellular carcinoma progression by activating anti-apoptotic factor Bcl-2 and NHE1 known to regulate cell survival.

전자파(電磁波)에 노출된 생쥐의 해마에서 운동이 AMPK, ERK-1/2, p38 단백 발현 변화에 미치는 생체 영향 (The Expression changes of AMPK, ERK-1/2, and p38 protein associated with Exercise in the Mouse hippocampus exposed to Radiofrequency Radiation)

  • 이민선;박옥진;김현택;김명주
    • 디지털융복합연구
    • /
    • 제18권3호
    • /
    • pp.267-273
    • /
    • 2020
  • 전자파에 노출된 생쥐에서 운동이 해마에 미치는 생체영향을 확인하고자 뇌의 신경세포에서 많이 발현되는 AMPKα, p-AMPKα, ERK1/2, p-ERK1/2, p38, p-p38 단백질 발현의 변화를 해마에서 조사하였다. 10주 동안 생쥐들을 정상군, 운동군, 전자파 노출군, 전자파 노출 및 자발운동군으로 나누어 비교하였다. 생쥐들은 835 MHz의 주파수를 송출하는 Wave Exposer V20을 사용해 전자파에 노출시켰고, 각 분자들에 대한 단백질 발현량의 차이는뇌의 해마를 분리해 Western blot으로 조사했다. 각각의 분자들과 인산화 분자들에서 유의한 단백질 발현의 증가는 운동군에서 있었으며, 전자파 노출 및 운동군에서는 이들 분자들의 발현이 통계적으로 유의한 수준으로 현저히 감소하였다. 따라서, 본 연구는 기억을 담당하는 해마에서 운동에 의해 신경가소성이 증가할 수 있지만, 전자파에 노출되면 기억 및 인지기능이 영향을 받을 수 있어 전자파가 실제 세포수준에서 기억력에 영향을 미칠 수 있음을 보였다. 앞으로 전자파가 치매에 미치는 임상적 영향에 대한 연구를 진행한다면 흥미 있는 결과를 기대할 수 있을 것이다.

마우스 대식세포 RAW 264.7 세포주에서 hesperetin에 의한 p38 MAPK와 ERK1/2를 통한 염증반응 조절 (Hesperetin Ameliorates Inflammatory Responses in Lipopolysaccharide-stimulated RAW 264.7 Cells via p38 MAPK and ERK1/2)

  • 이승훈;이은주;정정욱;손호용;김종식
    • 생명과학회지
    • /
    • 제29권1호
    • /
    • pp.129-134
    • /
    • 2019
  • 이전 연구에서 전통주 주박 ethyl acetate 분획물로부터 11개의 순수물질을 분리 동정하였다. 11개의 순수물질은 caffeic acid, coumaric acid, D-mannitol, ferulic acid, hesperetin, hesperidin, naringenin, naringin, sinapic acid, syringic acid, 그리고 vanilic acid로 동정되었다. 이번 연구에서는 그들의 항염증 활성을 연구하기 위하여 LPS로 활성화된 RAW 264.7 세포에서 nitric oxide (NO) 생산을 측정하였다. 11개의 순수물질 중 hesperetin과 naringenin이 가장 높은 NO 생성 억제를 보여주었다. 또한, hesperetin은 세포 생존율에 영향 없이 농도의존적으로 NO 생산을 저해하였다. 그리고, hesperetin은 농도의존적으로 염증유전자인 iNOS의 발현을 농도의존적으로 억제한 반면, COX-2 단백질의 발현에는 영향을 주지 않았다. 게다가, hesperetin은 p38 MAPK와 ERK1/2의 인산화를 억제한 반면 JNK의 인산화에는 영향을 주지 못했다. 이러한 결과는 hesperetin은 항염증 활성을 가지며, 이러한 항염증 활성은 p38 MAPK와 ERK1/2 경로를 억제함으로써 일어난다는 것을 나타낸다.

Immune-enhancing Activity of Paeonia lactiflora through TLR4-dependent Activation of p38, JNK, and ERK1/2 RAW264.7 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.47-47
    • /
    • 2023
  • Paeonia lactiflora roots (PLR) are a medicinal plant widely used for treating inflammatory diseases. However, PLR has been recently reported to increase the production of proinflammatory mediators and activates phagocytosis in macrophages. Thus, in this study, we tried to verify the macrophage activation of PLR and elucidate its mechanism of action. PLR upregulated the production of proinflammatory mediators and activated phagocytosis in RAW264.7 cells. However, these effects were reversed by inhibition of TLR2/4. In addition, the inhibition of p38, JNK, and ERK1/2 reduced the PLR-mediated production of proinflammatory mediators, and the PLR-mediated activation of p38, JNK, and ERK1/2 was blocked by the TLR4 inhibition. These findings indicate that PLR may activate macrophages through TLR4-dependent activation of p38, JNK, and ERK1/2. These indicate that PLR has immunostimulatory activity. Thus, it is believed that PLR can be used as a functional food agent that enhances the immune system.

  • PDF

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

  • Jeong, Ji Eun;Park, Jae Hyun;Kim, Chun Soo;Lee, Sang Lak;Chung, Hai Lee;Kim, Woo Taek;Lee, Eun Joo
    • Clinical and Experimental Pediatrics
    • /
    • 제60권6호
    • /
    • pp.181-188
    • /
    • 2017
  • Purpose: Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extracellular signal-regulated kinase (ERK1/2), JNK, and p38 MAPK is modulated in cultured cortical neuronal cells and astrocytes. Methods: Primary neuronal cells and astrocytes were prepared from cortices of ICR mouse embryos and divided into the normoxic, hypoxia (H), and hypoxia-pretreated with EPO (H+EPO) groups. The phosphorylation of MAPK pathway was quantified using western blot, and the apoptosis was assessed by caspase-3 measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: All MAPK pathway signals were activated by hypoxia in the neuronal cells and astrocytes (P<0.05). In the neuronal cells, phosphorylation of ERK-1/-2 and apoptosis were significantly decreased in the H+EPO group at 15 hours after hypoxia (P<0.05). In the astrocytes, phosphorylation of ERK-1/-2, p38 MAPK, and apoptosis was reduced in the H+EPO group at 15 hours after hypoxia (P<0.05). Conclusion: Pretreatment with rHuEPO exerts neuroprotective effects against hypoxic injury reducing apoptosis by caspase-dependent mechanisms. Pathologic, persistent ERK activation after hypoxic injury may be attenuateed by pretreatment with EPO supporting that EPO may regulate apoptosis by affecting ERK pathways.

Dual control of the vestibulosympathetic reflex following hypotension in rats

  • Park, Sang Eon;Jin, Yuan-Zhe;Park, Byung Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.675-686
    • /
    • 2017
  • Orthostatic hypotension (OH) is associated with symptoms including headache, dizziness, and syncope. The incidence of OH increases with age. Attenuation of the vestibulosympathetic reflex (VSR) is also associated with an increased incidence of OH. In order to understand the pathophysiology of OH, we investigated the physiological characteristics of the VSR in the disorder. We applied sodium nitroprusside (SNP) to conscious rats with sinoaortic denervation in order to induce hypotension. Expression of pERK in the intermediolateral cell column (IMC) of the T4~7 thoracic spinal regions, blood epinephrine levels, and blood pressure were evaluated following the administration of glutamate and/or SNP. SNP-induced hypotension led to increased pERK expression in the medial vestibular nucleus (MVN), rostral ventrolateral medullary nucleus (RVLM) and the IMC, as well as increased blood epinephrine levels. We co-administered either a glutamate receptor agonist or a glutamate receptor antagonist to the MVN or the RVLM. The administration of the glutamate receptor agonists, AMPA or NMDA, to the MVN or RVLM led to elevated blood pressure, increased pERK expression in the IMC, and increased blood epinephrine levels. Administration of the glutamate receptor antagonists, CNQX or MK801, to the MVN or RVLM attenuated the increased pERK expression and blood epinephrine levels caused by SNP-induced hypotension. These results suggest that two components of the pathway which maintains blood pressure are involved in the VSR induced by SNP. These are the neurogenic control of blood pressure via the RVLM and the humoral control of blood pressure via epinephrine release from the adrenal medulla.

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

비소세포 폐암세포에서 Uteroglobin의 이입에 의한 cPLA2와 COX-2 발현 및 ERK 활성의 변화 (The Effect of Uteroglobin on cPLA2, COX-2 Expression and ERK Activation in NSCLC Cells)

  • 김우진;윤정민;이경희;한선진;신원혁;임재준;유철규;이춘택;한성구;심영수;김영환
    • Tuberculosis and Respiratory Diseases
    • /
    • 제56권6호
    • /
    • pp.638-645
    • /
    • 2004
  • 연구배경 : Uteroglobin은 정상 폐상피세포에서 발현되는 단백질로 비소세포암 조직이나 세포주에서는 발현이 저하되어있다. 항염증작용을 하며 암세포에 과발현 시키면 암의 형질이 소실됨이 밝혀지고 있다. 역시 염증작용과 관련이 있는 cPLA2와 COX-2도 암과의 관련성이 밝혀지고 있고, 암억제나 MMP의 억제 등의 공통점을 가지고 있으나 이들의 관련성에 대해서는 밝혀진 바가 없다. 또한, COX-2의 암과의 관련성을 설명하는 기전으로 ERK 활성화의 관련 가능성이 있으나, uteroglobin과 ERK의 관련성도 아직 밝혀지지 않고 있다. 비소세포폐암 세포주에 uteroglobin을 과발현시킨 후, cPLA2와 COX-2의 발현, 그리고 MMP-2, MMP-9, ERK의 활성화가 어떻게 변화하는지에 대해 실험하였다. 방 법 : 폐선암세포주인 A549와 NCI-H460 세포주에 adenovirus-uteroglobin, adenovirus-null을 각각 20,100,200 moi로 transduction 시킨 뒤, 48시간 배양한 후에 단백질을 추출하였다. Uteroglobin의 발현을 확인한 후, cPLA2, COX-2, pERK, total ERK에 대해 Western blot을 시행하였고, 배양액으로 zymography를 시행하였다. 결 과 : A549 세포주와 NCI-H460 세포주에서 uteroglobin의 발현을 확인한 세포주에서 cPLA2와 COX-2의 발현이 감소함을 Western blot으로 확인하였고, pERK가 증가함을 Western blot으로 보았고, ERK의 활성화가 증가함을 확인하였다. MMP-9은 활성이 저하되었고, MMP-2는 변화가 없었다. MEK inhibitor인 U0126을 이용하여 ERK의 활성화를 저해시킨 후, uteroglobin의 발현에는 영향이 없었고, MMP-9의 활성저하효과가 소실되었다. 결 론 : 폐암세포주에서 uteroglobin의 항암작용기전에 cPLA2 와 COX-2의 발현의 감소와 ERK의 활성화가 기여할 것으로 사료된다.

Cyclooxygenase-2 Induction in Porphyromonas gingivalis-Infected THP-1 Monocytic Cells

  • Choi, Eun-Kyoung;Oh, Byung-Ho;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • 제31권1호
    • /
    • pp.21-26
    • /
    • 2006
  • Periodontopathogens including Porphyromonas gingivalis interact with host periodontal cells and the excessive subsequent host responses contribute a major part to the development of periodontal diseases. Cyclooxygenase(COX)-2-synthesized $PGE_2$ has detrimental activities in terms of periodontal pathogenesis. The present study investigated induction of COX-2 expression by P. gingivalis in human monocytic THP-1 cells. Live P. gingivalis increased expression of COX-2, but not that of COX-1, which was demonstrated at both mRNA and protein levels. Elevated levels of $PGE_2$ were released from P. gingivalis-infected THP-1 cells. Pharma-cological inhibition of p38 mitogen-activated protein kinase(MAPK) and extracellular signal-regulated kinase(ERK) substantially attenuated P. gingivalis-induced COX-2 mRNA expression. Indeed, activation of p38 MAPK and ERK was observed in P. gingivalis-infected THP-1 cells. Also, P. gingivalis induced activation of nuclear $factor-{\kappa}B\;(NF-{\kappa}B)$ which is an important transcription factor for COX-2. These results suggest that COX-2 expression is up regulated in P. gingivalis-infected monocytic cells, at least in part, via p38 MAPK, ERK, and $NF-{\kappa}B$.