• Title/Summary/Keyword: p-Akt

Search Result 440, Processing Time 0.035 seconds

Effect of Epigallocatechin Gallate on Phosphoinositide 3-kinase/Akt and Glycogen Synthase Kinase-3 Pathway in Oxidative-stressed N18D3 Cells Following $H_2O_2$ Exposure (산화성 손상을 받은 N18D3세포에서 Epigallocatechin gallate가 Phosphoinositide 3-kinase/Akt 및 Glycogen synthase kinase-3경로에 미치는 효과)

  • Koh, Seong Ho;Kwon, Hyug Sung;Oh, Hwa Soon;Oh, Jae Ho;Park, Ynun Joo;Kim, Jun Gyou;Kim, Ki Sok;Kim, Yang Soon;Yang, Ki Hwa;Kim, Seung U.;Kim, Seung H.;Jung, Hai Kwu
    • Korean Journal of Clinical Pharmacy
    • /
    • v.13 no.1
    • /
    • pp.29-39
    • /
    • 2003
  • Neurodegenerative disorders are associated with apoptosis as a causing factor or an inducer. On the other hand, it has been reported that epigallocatechin gallate (EUG), one of antioxidants and flavonoids, and z-VAD-fmk, a nonselective caspase inhibitor, suppress oxidative-radical-stress-induced apoptosis. However, it is not yet known what is the effects of EGCG and z-VAD-fmk on the apoptotic pathway is through phosphoinositide 3-kinase (PI3K), Akt and glycogen synthase kinase-3 (GSK-3) as well as mitochondria, caspase-3 and poly (ADP-ribose) polymerase (PARP). We investigated the effects of EGCG by using $H_2O_2$ treated N18D3 cells, mouse DRG hybrid neurons. Methods: Following 30 min $100\;{\mu}m\;H_2O_2$ exposure, the viability of N18D3 cells (not pretreated vs. EGCG or z-VAD-fmk pretreated) was evaluated by using MTT assay. The effect of EGCG on immunoreactivity (IR) of cytochrome c, caspase-3, PARP, PI3K/Akt and GSK-3 was examined by using Western blot, and was compared with that of z-Y4D-fmk. Results: EGCG or z-VAD-fmk pretreated N18D3 cells showed increased viability. Dose-dependent inhibition of caspase-3 activation accompanied by PARP cleavage were demonstrated by pretreatment of both agents. However, inhibition of cytochrome c release was only detected in EGCG pretreated N18D3 cells. On the pathway through PI3K/Akt and GSK-3, however, the result of Western blot in EGCG pretreated N18D3 cells showed decreased IR of Akt and GSK-3 and increased IR of p85a PI3K, phosphorylated Akt and GSK-3, and contrasted with that in z-VAD-fmk pretreated N18D3 cells showing no changes on each molecule. Conclusion: These data show that EGCG affects apoptotic pathway through upstream signal including PI3K/Akt and GSK-3 pathway as well as downstream signal including cytochrome c and caspase-3 pathway. Therefore, these results suggest that EGCG mediated activation of PI3K/Akt and inhibition GSK-B could be new potential therapeutic strategy for neurodegenerative diseases associated with oxidative injury.

  • PDF

APOPTOTIC EFFECT IN COMBINATION OF CYCLOSPORIN A AND TAXOL ON ORAL SQUAMOUS CELL CARCINOMA CELL LINE THROUGH THE PI-3 KINASE/AKT1 PATHWAY (구강 편평세포암종 세포주에서 Cyclosporin A와 Taxol 투여시 PI-3 kinase/Akt1 Pathway에 의한 세포사멸 병용효과)

  • Kim, Kyu-Young;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.426-436
    • /
    • 2007
  • Oral cancer take up 2-6% of all carcinomas and squamous cell carcinoma, which is the most common type in oral cancer, has a poor prognosis due to its high metastasis and recurrence rates. In treating oral cancer, chemotherapy to the primary, metastasized and recurrent lesion is a very important and useful treatment, even though its widespread usage is limited due to high general toxicity and local toxicity to other organs. Taxol, a microtubule stabilizing agent, is an anticancer drug that induces cell apoptosis by inhibiting depolymerization of microtubules in between the metaphase and anaphase of the cell mitosis. Recently, its effectiveness and mechanism on various tumor has been reported. However, not much research has been done on the application of Taxol to oral squamous cell carcinoma. Cyclosporin A, which is an immunosuppressant, is being used on cancers and when co-administered with Taxol, effectiveness of Taxol is enhanced by inhibition of Taxol induced multidrug resistance. In this study, Cyclosporin A with different concentration of Taxol was co-administered to HN22, the oral squamous cell carcinomacell line. To observe the cell apoptosis and the mechanisms that take part in this process, mortality evaluation of tumor cell using wortmannin, c-DNA microarray, RT-PCR analysis, cytometry analysis and western blotting were used, and based upon the observation on the effect and mechanism of the agent, the following results were obtained: 1. The HN22 cell line viability was lowest when $100{\mu}M$ of Wortmannin and $5{\mu}g/ml$ of Taxol were co-administered, showing that Taxol participates in P13K-AKT1 pathway. 2. In c-DNA microarray, where $1{\mu}g/ml$ of cyclosporine A and 3mg/ml of Taxol were co-administered, no up regulation of AKT1, PTEN and BAD c-DNA that participate in cell apoptosis was observed. 3. When $1{\mu}g/ml$ of Cyclosporin A was applied alone to HN22 cell line, no difference was found in AKT1, PTEN and BAD mRNA expression. 4. Increased AKT1, mRNA expression was observed when $3{\mu}g/ml$ of Taxol was applied alone to HN22 cell line. 5. When $1{\mu}g/ml$ of Cyclosporin A and Taxol($3{\mu}g/ml\;and\;5{\mu}g/ml$) were co-administered to HN22 cell line, PTEN mRNA expression increased, whereas AKT1 and BAD mRNA decreased. 6. As a result of cytometry analysis, in the group of Cyclosporin A($1{\mu}g/ml$) and Taxol($3{\mu}g/ml$) co-administration, increased Annxin V was observed, which shows that apoptosis occurred by deformation of plasma membrane. However, no significant difference was observed with vary ing concentration. 7. In western blot analysis, no caspase 3 was observed in the group of Cyclosporin A($1{\mu}g/ml$) and Taxol($3{\mu}g/ml$) co-administration. From the results of this study, it can be concluded that synergistic effect can be observed in combination therapy of Taxol and Cyclosporin A on oral squamous cell carcinoma cell line, where decreased activity of the cell line was observed. This resulted in decreased AKT1 and BAD mRNA and increased PTEN mRNA expression and when wortmannin and Taxol were co-administered, the viability decreased which confirms that Taxol decreases the viability of tumor cell line. Hence, when Taxol and cyclosporine A are co-administered, it can be assumed that cell apoptosis occurs through AKt1 pathway.

Extracellular Nucleotides Can Induce Chemokine (C-C motif) Ligand 2 Expression in Human Vascular Smooth Muscle Cells

  • Kim, Jeung-Il;Kim, Hye-Young;Kim, Sun-Mi;Lee, Sae-A;Son, Yong-Hae;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • To understand the roles of purinergic receptors and cellular molecules below the receptors in the vascular inflammatory response, we determined if extracellular nucleotides up-regulated chemokine expression in vascular smooth muscle cells (VSMCs). Human aortic smooth muscle cells (AoSMCs) abundantly express $PSY_1$, $PSY_6$, and $PSY_{11}$ receptors, which all respond to extracellular nucleotides. Exposure of human AoSMCs to $NAD^+$, an agonist of the human $PSY_{11}$ receptor, and $NADP^+$ as well as ATP, an agonist for $PSY_1$ and $PSY_{11}$ receptors, caused increase in chemokine (C-C motif) ligand 2 gene (CCL2) transcript and CCL2 release; however, UPT did not affect CCL2 expression. CCL2 release by $NAD^+$ and $NADP^+$ was inhibited by a concentration dependent manner by suramin, an antagonist of P2-purinergic receptors. $NAD^+$ and $NADP^+$ activated protein kinase C and enhanced phosphorylation of mitogen-activated protein kinases and Akt. $NAD^+$- and $NADP^+$-mediated CCL2 release was significantly attenuated by SP6001250, U0126, LY294002, Akt inhibitor IV, RO318220, GF109203X, and diphenyleneiodium chloride. These results indicate that extracellular nucleotides can promote the proinflammatory VSMC phenotype by up-regulating CCL2 expression, and that multiple cellular elements, including phosphatidylinositol 3-kinase, Akt, protein kinase C, and mitogen-activated protein kinases, are involved in that process.

Induction of MicroRNA-9 Mediates Cytotoxicity of Curcumin Against SKOV3 Ovarian Cancer Cells

  • Zhao, Song-Feng;Zhang, Xiao;Zhang, Xiao-Jian;Shi, Xiu-Qin;Yu, Zu-Jiang;Kan, Quan-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3363-3368
    • /
    • 2014
  • Background: Curcumin, a phenolic compound extracted from the rhizomes of Curcuma longa, has shown cytotoxic effects against a variety of cancers. The aim of this study was to identify potential microRNA (miRNA) mediators of the anticancer effects of curcumin in ovarian cancer cells. Materials and Methods: SKOV3 ovarian cancer cells were treated with curcumin ($10-60{\mu}M$) and miR-9 expression, cell proliferation, and apoptosis were assessed. The effects of miR-9 depletion on curcumin-mediated growth suppression were also examined. Phosphorylation of Akt and forkhead box protein O1 (FOXO1) was measured in cells with miR-9 overexpression or curcumin treatment. Results: Curcumin caused a significant and dose-dependent increase of miR-9 expression in SKOV3 cells, while significantly impeding cell proliferation and stimulating apoptosis. Depletion of miR-9 significantly (p<0.05) attenuated the growth-suppressive effects of curcumin on SKOV3 cells, coupled with reduced percentages of apoptotic cells. In contrast, overexpression of miR-9 significantly enhanced the cleavage of caspase-3 and poly(ADP-ribose) polymerase and promoted apoptotic death in SKOV3 cells. Western blot analysis showed that both miR-9 overexpression and curcumin similarly caused a significant (p<0.05) decline in the phosphorylation of Akt and FOXO1, compared to untreated cells. Conclusions: The present study provided evidence that curcumin exerts its cytotoxic effects against SKOV3 ovarian cancer cells largely through upregulation of miR-9 and subsequent modulation of Akt/FOXO1 axis. Further studies are needed to identify direct targets of miR-9 that mediate the anticancer effects of curcumin in ovarian cancer cells.

The Cholesterol-Binding Antibiotic Nystatin Induces Expression of Macrophage Inflammatory Protein-1 in Macrophages

  • Baek, Seungil;Kim, Sun-Mi;Lee, Sae-A;Rhim, Byung-Yong;Eo, Seong-Kug;Kim, Koanhoi
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.42-48
    • /
    • 2013
  • Nystatin, a polyene antifungal antibiotic, is a cholesterol sequestering agent. The antifungal agent alters composition of the plasma membrane of eukaryotic cells, whereas its effects on cells are poorly investigated. In the current study, we investigated the question of whether nystatin was able to induce expression of macrophage inflammatory protein-1 (MIP-1). THP-1 cells rarely express MIP-$1{\alpha}$ and MIP-$1{\beta}$, however, upon exposure to nystatin, significantly elevated expression of MIP-$1{\alpha}$ and MIP-$1{\beta}$ was observed in a dose-dependent fashion at the messenger and protein levels. Cellular factors activated by nystatin as well as involved in nystatin-induced expression of MIP-1 proteins were identified in order to understand the molecular mechanisms of action of the anti-fungal agent. Treatment with nystatin resulted in enhanced phosphorylation of Akt, ERK, p38 MAPK, and JNK. Abrogation or significant attenuation of nystatin-induced expression of MIP-$1{\alpha}$ and MIP-$1{\beta}$ was observed by treatment with Akt inhibitor IV, LY294002, and SP6001250. Inhibition of ERK or p38MAPK using U0126 and SB202190 did not lead to attenuation of MIP-1 expression. In addition, inhibitors of protein kinase C, such as GF109203X and Ro-318220, also attenuated expression of MIP-1. These results indicate that nystatin is able to activate multiple cellular kinases and, among them, Akt and JNK play primary roles in nystatin-induced expression of MIP-1 proteins.

Anticancer Activity of Novel Daphnane Diterpenoids from Daphne genkwa through Cell-Cycle Arrest and Suppression of Akt/STAT/Src Signalings in Human Lung Cancer Cells

  • Jo, Si-Kyoung;Hong, Ji-Young;Park, Hyen Joo;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.513-519
    • /
    • 2012
  • Although the immense efforts have been made for cancer prevention, early diagnosis, and treatment, cancer morbidity and mortality has not been decreased during last forty years. Especially, lung cancer is top-ranked in cancer-associated human death. Therefore, effective strategy is strongly required for the management of lung cancer. In the present study, we found that novel daphnane diterpenoids, yuanhualine (YL), yuanhuahine (YH) and yuanhuagine (YG) isolated from the flower of Daphne genkwa (Thymelaeaceae), exhibited potent anti-proliferative activities against human lung A549 cells with the $IC_{50}$ values of 7.0, 15.2 and 24.7 nM, respectively. Flow cytometric analysis revealed that the daphnane diterpenoids induced cell-cycle arrest in the G0/G1 as well as G2/M phase in A549 cells. The cell-cycle arrests were well correlated with the expression of checkpoint proteins including the up-regulation of cyclin-dependent kinase inhibitor p21 and p53 and down-regulation of cyclin A, cyclin B1, cyclin E, cyclin dependent kinase 4, cdc2, phosphorylation of Rb and cMyc expression. In the analysis of signal transduction molecules, the daphnane diterpenoids suppressed the activation of Akt, STAT3 and Src in human lung cancer cells. The daphnane diterpenoids also exerted the potent anti-proliferative activity against anticancer-drug resistant cancer cells including gemcitabine-resistant A549, gefitinib-, erlotinib-resistant H292 cells. Synergistic effects in the growth inhibition were also observed when yuanhualine was combined with gemcitabine, gefitinib or erlotinib in A549 cells. Taken together, these findings suggest that the novel daphnane diterpenoids might provide lead candidates for the development of therapeutic agents for human lung cancers.

Effects of Endurance Exercise and Ginsenoside Rb1 on AMP-Activated Protein Kinase, Phosphatidylinositol 3-Kinase Expression and Glucose Uptake in the Skeletal Muscle of Rats (지구성 운동과 Ginsenoside Rb1가 쥐 골격근의 AMP-Activated Protein Kinase(APMK), Phosphatidylinositol 3-Kinase(PI3K) 발현 및 Glucose Uptake에 미치는 영향)

  • Jung, Hyun-Lyung;Shin, Young Ho;Kang, Ho-Youl
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1197-1203
    • /
    • 2013
  • This study investigated the effects of endurance exercise and ginsenoside $Rb_1$ on AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K) protein expression and glucose uptake in the skeletal muscle of rats. A total of 32 rats were randomly divided into four groups: CON (Control group, n=8), Ex (Exercise group; 25 m/min for 1 h, 6 days/week, 2 weeks, n=8), $Rb_1$ (Ginsenoside $Rb_1$ group; n=8), and $Rb_1/Ex$ ($Rb_1$+Exercise group, n=8). The $Rb_1$ and $Rb_1/Ex$ groups were incubated in ginsenoside $Rb_1$ (KRBP buffer, $100{\mu}g/mL$) for 60 min after a 2-week experimental treatment. After 2 weeks, the expression of phosphorylated $AMPK{\alpha}$ $Thr^{172}$, total $AMPK{\alpha}$, the p85 subunit of PI3K, pIRS-1 $Tyr^{612}$, and pAkt $Ser^{473}$ were determined in the soleus muscle. Muscle glucose uptake was measured using 2-deoxy-D-[$^3H$] glucose in epitroclearis muscle. Muscle glucose uptake was significantly higher in the three experimental groups (Ex, $Rb_1$, $Rb_1/Ex$) compared to the CON group (P<0.05). The expression of $tAMPK{\alpha}$ and $pAMPK{\alpha}$ $Thr^{172}$ was significantly higher in the Ex, $Rb_1$, and $Rb_1/Ex$ groups compared to the CON group (P<0.05). The expression of pAkt $Ser^{473}$ was significantly higher in the $Rb_1$ group compared to the CON and EX groups. However, the expression of pIRS-1 $Tyr^{612}$ and the p85 subunit of PI3K were not significantly different between the four groups. Overall, these results suggest that ginsenoside $Rb_1$ significantly stimulates glucose uptake in the skeletal muscle of rats through increasing phosphorylation in the AMPK pathway, similar to the effects of exercise.

Lysophosphatidic acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Sohn, Uy-Dong;Park, Kyoung-Chan
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.96.1-96.1
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we were surprised to find that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. (omitted)

  • PDF

Role of Integrin-Linked Kinase in Multi-drug Resistance of Human Gastric Carcinoma SGC7901/DDP Cells

  • Song, Wei;Jiang, Rui;Zhao, Chun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5619-5625
    • /
    • 2012
  • Gastric carcinoma is a leading cause of cancer death in the world and multi-drug resistance (MDR) is an essential aspect of gastric carcinoma chemotherapy failure. Recent studies have shown that integrin-linked kinase (ILK) is involved in metastasis of human tumors, expression silencing of ILK inhibiting the metastasis of several types of cultured human cancer cells. However, the role and potential mechanism of ILK to reverse the multi-drug resistance in human gastric carcinoma is not fully clear. In this report, we focused on roles of expression silencing of ILK in multi-drug resistance reversal of human gastric carcinoma SGC7901/DDP cells, including increased drug sensitivity to cisplatin, cell apoptosis rates, and intracellular accumulation of Rhodamine-123, and decreased mRNA and protein expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), excision repair cross-complementing gene 1 (ERCC1), glutathione S-transferase -${\pi}$ (GST-${\pi}$) and RhoE, and transcriptional activation of AP-1 and NF-${\kappa}B$ in ILK silenced SGC7901/DDP cells. We also found that there was a decreased level of p-Akt and p-ERK. The results indicated that ILK might be used as a potential therapeutic strategy to combat multi-drug resistance through blocking PI3K-Akt and MAPK-ERK pathways in human gastric carcinoma.

The protective effects of ethanolic extract of Clematis terniflora against corticosterone-induced neuronal damage via the AKT and ERK1/2 pathway

  • Noh, Yoohun;Cheon, Seungui;Kim, In Hye;Kim, Inyong;Lee, Seung-Ah;Kim, Do-Hee;Jeong, Yoonhwa
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.400-405
    • /
    • 2018
  • Chronic stress induces neuronal cell death, which can cause nervous system disorders including Parkinson's disease and Alzheimer's disease. In this study, we evaluated the neuroprotective effects of Clematis terniflora extract (CTE) against corticosterone-induced apoptosis in rat pheochromocytoma (PC12) cells, and also investigated the underlying molecular mechanisms. At concentrations of 300 and $500{\mu}g/ml$, CTE significantly decreased apoptotic cell death and mitochondrial damage induced by $200{\mu}M$ corticosterone. CTE decreased the expression levels of endoplasmic reticulum (ER) stress proteins GRP78, GADD153, and mitochondrial damage-related protein BAD, suggesting that it downregulates ER stress evoked by corticosterone. Furthermore, our results suggested that these protective effects were mediated by the upregulation of p-AKT and p-ERK1/2, which are involved in cell survival signaling. Collectively, our results indicate that CTE can lessen neural damage caused by chronic stress.