• 제목/요약/키워드: p-AMPK

검색결과 146건 처리시간 0.025초

Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

  • Hu, Min;Liu, Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권4호
    • /
    • pp.325-332
    • /
    • 2016
  • Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS ($1{\mu}g/ml$) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs.

지구성 운동과 Ginsenoside Rb1가 쥐 골격근의 AMP-Activated Protein Kinase(APMK), Phosphatidylinositol 3-Kinase(PI3K) 발현 및 Glucose Uptake에 미치는 영향 (Effects of Endurance Exercise and Ginsenoside Rb1 on AMP-Activated Protein Kinase, Phosphatidylinositol 3-Kinase Expression and Glucose Uptake in the Skeletal Muscle of Rats)

  • 정현령;신영호;강호율
    • 한국식품영양과학회지
    • /
    • 제42권8호
    • /
    • pp.1197-1203
    • /
    • 2013
  • 본 연구는 2주간의 지구성 운동과 ginsenoside $Rb_1$이 쥐골격근의 AMPK insulin signaling($tAMPK{\alpha}$, $pAMPK{\alpha}$ $Thr^{172}$)과 PI3K insulin signaling pathway(pIRS-1 $Tyr^{612}$, PI3K $p^{85}$, pAkt $Ser^{473}$) 발현 및 glucose uptake에 미치는 영향을 분석하였다. 골격근내 glucose uptake에서는 비교집단과 비교하여 운동집단(59.4%), $Rb_1$집단(70.5%) $Rb_1/Ex$집단(58.6%)에서 유의하게 증가하였다. 2주간의 지구성 운동과 ginsenoside $Rb_1$이 AMPK insulin signaling pathway에 미치는 효과를 조사한 결과 비교집단에 비해 $AMPK{\alpha}$(Ex, 28.6%; $Rb_1$, 28.5%; $Rb_1/Ex$, 29.8%), $pAMPK{\alpha}$ $Thr^{172}$(Ex, 35.1%; $Rb_1$, 35.3%; $Rb_1/Ex$, 30.9%)의 발현이 유의하게 증가한 것을 알 수 있었다. 2주간의 지구성 운동과 ginsenoside $Rb_1$이 PI3K insulin signaling pathway에 미치는 효과를 알아본 결과 비교집단과 비교하여 IRS-1, PI3K $p^{85}$에서는 유의한 차이가 없었으나 pAkt $Ser^{473}$$Rb_1$ 집단에서 유의하게 증가한 것을 알 수 있었다. 이상의 결과를 종합해 볼 때, ginsenoside $Rb_1$은 운동과 더불어 근육 세포내 AMPK의 활성화와 근육 내 glucose uptake를 증가시켜 제2형 당뇨병 예방과 치료에 효과가 있을 것으로 생각된다. 그러나 본 연구의 결과로 PI3K insulin signaling pathway의 항당뇨 효과는 설명하기는 부족하다고 판단되며 추후 본 연구의 결과를 기초로 ginsenoside $Rb_1$의 농도, 처치시간, 처치방법을 고려한 후속 연구가 필요할 것으로 생각된다.

Fat Mass and Obesity-Associated (FTO) Stimulates Osteogenic Differentiation of C3H10T1/2 Cells by Inducing Mild Endoplasmic Reticulum Stress via a Positive Feedback Loop with p-AMPK

  • Son, Hyo-Eun;Min, Hyeon-Young;Kim, Eun-Jung;Jang, Won-Gu
    • Molecules and Cells
    • /
    • 제43권1호
    • /
    • pp.58-65
    • /
    • 2020
  • Fat mass and obesity-associated (FTO) gene helps to regulate energy homeostasis in mammals by controlling energy expenditure. In addition, FTO functions in the regulation of obesity and adipogenic differentiation; however, a role in osteogenic differentiation is unknown. This study investigated the effects of FTO on osteogenic differentiation of C3H10T1/2 cells and the underlying mechanism. Expression of osteogenic and endoplasmic reticulum (ER) stress markers were characterized by reverse-transcriptase polymerase chain reaction and western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity. BMP2 treatment increased mRNA expression of osteogenic genes and FTO. Overexpression of FTO increased expression of the osteogenic genes distal-less homeobox5 (Dlx5) and runt-related transcription factor 2 (Runx2). Activation of adenosine monophosphate-activated protein kinase (AMPK) increased FTO expression, and there was a positive feedback loop between FTO and p-AMPK. p-AMPK and FTO induced mild ER stress; however, tunicamycin-induced severe ER stress suppressed FTO expression and AMPK activation. In summary, FTO induces osteogenic differentiation of C3H10T1/2 cells upon BMP2 treatment by inducing mild ER stress via a positive feedback loop with p-AMPK. FTO expression and AMPK activation induce mild ER stress. By contrast, severe ER stress inhibits osteogenic differentiation by suppressing FTO expression and AMPK activation.

보중익기탕이 cytochrome P450 및 LKB1-AMPK 항산화 신호에 미치는 영향 (Effect of Bojungikgi-tang on cytochrome P450 and LKB1-AMPK anti-oxidant signaling pathway)

  • 송유림;박선동;김영우
    • 대한한의학방제학회지
    • /
    • 제29권4호
    • /
    • pp.277-283
    • /
    • 2021
  • Objectives : We investigated the effects of Bojungikgi-tang (BJIGT) on P450 cytochrome enzyme and oxidative stress in the cells. Methods : We enrolled the HepG2 hepatocyte cell line to assess MTT assay, flow cytometer, and immunoblotting analysis. Expression of CYP450 was confirmed by immunoblotting analysis in the Huh7 cell line. Results : We determined that BJIKT markdely changed the expression of the CYP2C19, CYP2D6, and CYP2E1. Moreover, BJIKT inhibited the cell toxicity induced by arachidonic acid + iron treatment, as assessed by FACS analysis. BJIKT induced AMPK activation, which increased the phophorylation of ACC. Conclusions : This study verified the effects of BJIKT, on P450, ROS production, mitochondrial damage and AMPK signaling pathway, which might give us the scientific information about the traditional herbal prescription.

8주간의 유산소 운동강도에 따른 어린 생쥐의 체중, 식이효율, 뇌의 비만조절 인자(AMPK), 활성산소(MDA), 항산화효소(SOD)의 차이 (Differences in Body Weight, Dietary Efficiency, Brain Obesity Control Factor (AMPK), Reactive Oxygen Species (MDA), and Antioxidant Enzymes (SOD) in Young Mice According to the Intensity of Aerobic Exercise for 8 Weeks)

  • 전미양
    • Journal of Korean Biological Nursing Science
    • /
    • 제23권3호
    • /
    • pp.247-255
    • /
    • 2021
  • Purpose: The goal of this study was to see how different aerobic exercise intensities affected AMP-activated protein kinase (AMPK), reactive oxygen, and antioxidant enzymes in young mice during an 8-week period. Methods: Forty male C57BL/6 mice, aged seven weeks, were randomly assigned to one of four groups: control (n=10), low-intensity exercise (n=10), moderate-intensity exercise (n=10), and high-intensity exercise (n=10). For eight weeks, aerobic activity was performed once a day for 35-40 minutes, five days a week. The data were analyzed using descriptive statistics, analysis of variance (ANOVA), chi-squared tests, and the Tukey test in the SPSS/WIN 25.0 program. Results: Weight (p=.001) was substantially different between the moderate-intensity exercise group and the control group in AMPK (p<.001). In addition, there were no significant differences between the moderate-intensity exercise group and the control group in reactive oxygen malondialdehyde (MDA) levels (p=.136) and antioxidant enzyme superoxide dismutase (SOD) levels (p=.521). Conclusion: These findings suggest that moderate-intensity aerobic exercise increased AMPK activation and helped young mice shed weight.

지구력 트레이닝 및 Rosiglitazone 병행 처치가 당뇨병이 유발된 쥐의 골격근에서 PPARs, PGC-1α, GLUT-4 및 p-AMPK-α2의 발현에 미치는 영향 (The Effects of Endurance Training Combined with Rosiglitazone on The Expression of PPARs, PGC-1α, GLUT-4 and p-AMPK-α2 in The Skeletal Muscle of Diabetic Induced-Rats)

  • 하태균;김재철
    • 운동영양학회지
    • /
    • 제13권2호
    • /
    • pp.131-140
    • /
    • 2009
  • The aim of this study was to investigate the expression of PPAR-α, -β/δ, -γ, PGC-1α, GLUT-4 and p-AMPK-α2 protein in the skeletal muscle of diabetic induced-rats by endurance training combined with rosiglitazone. The expression of PPAR-α, -β/δ, -γ, PGC-1α, GLUT-4 and p-AMPK-α2 protein in red and white gastrocnemius by western blotting. The body weight was higher in diabetic induced-rats compared to the normal rats and after the treatment of exercise combined with rosiglitazone was significantly reduced in the all group. The levels of blood glucose was higher in diabetic induced-rats compared to the normal rats and after the treatment of exercise combined with rosiglitazone was significantly reduced in the all group. The expression of PPAR-α, -γ, PGC-1α in skeletal muscle of diabetic induced-rats were increased all groups and increased significantly in the group with exercise combined with rosiglitazone. The expression of GLUT-4 and p-AMPK-α2 protein in the skeletal muscle of diabetic induced-rats were increased all groups and increased significantly in the group with exercise combined with rosiglitazoneI. These results suggest that exercise training and rosiglitazone may act as complementary therapies for the treatment of insulin rasistance.

AMPK activation and adenine nucleotide content in skeletal muscle following different types of high fat feeding

  • Kim, Hyun-Kook;Lee, Songsam
    • 운동영양학회지
    • /
    • 제16권1호
    • /
    • pp.35-41
    • /
    • 2012
  • We investigated the role of fatty acid availability on skeletal muscle AMPK activity and adenine nucleotide content. To investigate the chronic effects of elevated fatty acid in vivo Sprague-Dawley rats were fed a chow diet (15% fat) or a diet high in saturated (SAFA, 52% fat) or polyunsaturated (PUFA, 52% fat) fat for eight weeks. High fat diets increased (P < 0.05) plasma FFA levels by 25%. AMPK activity was increased in SAFA and PUFA rats and occurred in the absence of changes in ATP, AMP, phosphocreatine and glycogen content. These results suggest that increasing fatty acid availability increases AMPK activity independent of changes in the cellular energy charge, and implicate the regulation of AMPK by a covalent mechanism. These data also support the contention that increasing fatty acid availability can increase subsequent fatty acid oxidation by an AMPK-mediated process.

The activation of α2-adrenergic receptor in the spinal cord lowers sepsis-induced mortality

  • Kim, Sung-Su;Park, Soo-Hyun;Lee, Jae-Ryung;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.495-507
    • /
    • 2017
  • The effect of clonidine administered intrathecally (i.t.) on the mortality and the blood glucose level induced by sepsis was examined in mice. To produce sepsis, the mixture of D-galactosamine (GaLN; 0.6 g/10 ml)/lipopolysaccharide (LPS; $27{\mu}g/27{\mu}l$) was treated intraperitoneally (i.p.). The i.t. pretreatment with clonidine ($5{\mu}g/5{\mu}l$) increased the blood glucose level and attenuated mortality induced by sepsis in a dose-dependent manner. The i.t. post-treatment with clonidine up to 3 h caused an elevation of the blood glucose level and protected sepsis-induced mortality, whereas clonidine post-treated at 6, 9, or 12 h did not affect. The pre-treatment with oral D-glucose for 30 min prior to i.t. post-treatment (6 h) with clonidine did not rescue sepsis-induced mortality. In addition, i.t. pretreatment with pertussis toxin (PTX) reduced clonidine-induced protection against mortality and clonidine-induced hyperglycemia, suggesting that protective effect against sepsis-induced mortality seems to be mediated via activating PTX-sensitive G-proteins in the spinal cord. Moreover, pretreatment with clonidine attenuated the plasma tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$) induced by sepsis. Clonidine administered i.t. or i.p. increased $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, but decreased p-Tyk2 and p-mTOR levels in both control and sepsis groups, suggesting that the up-regulations of $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, or down-regulations of p-mTOR and p-Tyk2 may play critical roles for the protective effect of clonidine against sepsis-induced mortality.

Resveratrol Inhibits Oesophageal Adenocarcinoma Cell Proliferation via AMP-activated Protein Kinase Signaling

  • Fan, Guang-Hua;Wang, Zhong-Ming;Yang, Xi;Xu, Li-Ping;Qin, Qin;Zhang, Chi;Ma, Jian-Xin;Cheng, Hong-Yan;Sun, Xin-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.677-682
    • /
    • 2014
  • Resveratrol has been examined in several model systems for potential effects against cancer. Adenosine monophosphate-activated protein kinase (AMPK) is reported to suppress proliferation in most eukaryocyte cells. Whether resveratrol via AMPK inhibits proliferation of oesophageal adenocarcinoma cells (OAC) is unknown. The aim of this study was to determine the roles of AMPK in the protective effects of resveratrol in OAC proliferation and to elucidate the underlying mechanisms. Treatment of cultured OAC derived from human subjects or cell lines with resveratrol resulted in decreased cell proliferation. Further, inhibition of AMPK by pharmacological reagent or genetical approach abolished resveratrol-suppressed OAC proliferation, reduced the level of $p27^{Kip1}$, a cyclin-dependent kinase inhibitor, and increased the levels of S-phase kinase-associated protein 2 (Skp2) of $p27^{Kip1}$-E3 ubiquitin ligase and 26S proteasome activity reduced by resveratrol. Furthermore, gene silencing of $p27^{Kip1}$ reversed resveratrol-suppressed OAC proliferation. In conclusion, these findings indicate that resveratrol inhibits Skp2-mediated ubiquitylation and 26S proteasome-dependent degradation of $p27^{Kip1}$ via AMPK activation to suppress OAC proliferation.

EGCG Blocked Phenylephrin-Induced Hypertrophy in H9C2 Cardiomyocytes, by Activating AMPK-Dependent Pathway

  • Cai, Yi;Zhao, Li;Qin, Yuan;Wu, Xiao-Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권3호
    • /
    • pp.203-210
    • /
    • 2015
  • AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Previous studies have shown that activation of AMPK results in suppression of cardiac myocyte hypertrophy via inhibition of the p70S6 kinase (p70S6K) and eukaryotic elongation factor-2 (eEF2) signaling pathways. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac hypertrophy. However, the molecular mechanisms has not been well investigated. In this study, we found that EGCG could significantly reduce natriuretic peptides type A (Nppa), brain natriuretic polypeptide (BNP) mRNA expression and decrease cell surface area in H9C2 cardiomyocytes stimulated with phenylephrine (PE). Moreover, we showed that AMPK is activated in H9C2 cardiomyocytes by EGCG, and AMPK-dependent pathway participates in the inhibitory effects of EGCG on cardiac hypertrophy. Taken together, our findings provide the first evidence that the effect of EGCG against cardiac hypertrophy may be attributed to its activation on AMPK-dependent signaling pathway, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.