• Title/Summary/Keyword: ozone water

Search Result 583, Processing Time 0.027 seconds

Formation behaviour of Bromate in Processes of Advanced Water Treatment System using Nakdong river water (고도정수처리 공정에서 브로메이트의 거동 평가)

  • Kim, Young-Jin;Hyun, Kil-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.605-610
    • /
    • 2011
  • The objectives of this study are to investigate a bromate behaviour in the processes of advanced water treatment system (AWTS: preozonation, coagulator-settler, rapid sand filter, postozonation, biological activated carbon (BAC) beds) and to investigate the effects of ozonation, pH and ammonia nitrogen on bromate (${BrO^-}_3$) formation. As a result, $BrO_3$ was not detected in the processes of the AWTS without ozonation, while it was detected in a preozonated and postozonated water. For $BrO_3$ formation during June to November, the $BrO_3$ concentration of <9.4${\mu}g/L$ was observed in postozonated water, while it was reduced to about 46% by BAC beds. When applied ozone dosage and ozone contact time for influent with $Br^-$ of <0.3mg/L were 0.5-2.0mg/L.min and 10 min., $BrO_3$ concentration increased with increasing ozone dosage. Longer contact time and lower ozone level also was needed to inhibit the formation of $BrO_3$. At ozone dosage of 1.4 mg/L.min, the formation rate of $BrO_3$ increased with increase of pH value. When $NH_4-N$ concentration increased from 0.1mg/L to 0.4mg/L, $BrO_3$ concentration decreased to about 38%. These results revealed that $BrO_3$ concentration increased with increasing Br level, ozone dosage, and pH value, while it decreased with increase of $NH_4-N$ concentration.

A study on the BAC pilot plant in the Duk-san water works (덕산(德山) 정수장(淨水場)에서의 BAC Pilot plant에 관한 연구(硏究))

  • Lee, Sang-Bong;Kim, Dong-Youn;Lim, Jung-A;Lee, Won-Gwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.97-107
    • /
    • 1995
  • Today a conventional water treatment system has many problems. The ozone/GAC process, sometimes termed Biological Activated Carbon(BAC), appeared to be effective for the removal of soluble organic matters in the drinking water. The water quality of Nak-dong river in Pusan, generally shows BDOC 30-40% and NBDOC 60-70%. The pilot plant installed at the Duk-san water works that was been largest treatability(1,650,000ton/day) in Pusan. A experimental water in the pilot plant made use of the water after sand-filteration. Following results are drawn from this study. Initial adsorption velocity($DOC/DOC_o/T$) in the pure adsorption of GAG had a 0.0225, it's velocity changed to 0.006 after ozone added and the optimum ozone dose ranged of $1.4-2.0mgO_3/L$. A experimental water in the pilot plant composed with humic material(78%). Humic material composed with humic acid(20%) and fulvic acid(56%), and it's rate changed to 18 and 50% respectively after ozone added. DOC constantly decreased in the EBCTs and removal efficieny in the 15min of EBCT was 45-50%. It showed the largest removal rate of BDOC in the EBCT 5 and among the season, characteristics of removal varied. The HPC distributed over $10^6-10^7CFU/cm^3$ in the bed depth and among the season, distribution of HPC were differential.

  • PDF

Evaluation of Water Treament System for Phenol Removal in the Nakdong River Basin (낙동강 수계 페놀처리를 위한 정수처리시스템 평가)

  • Kang, Byung-Jae;Chae, Seon-Ha;Lee, Kyung-Hyuk;Jeon, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.609-618
    • /
    • 2009
  • Repeated phenol spill in the Nakdong River has been a big issue in Korea since 1991. In this study, treatment of phenol in each water treatment process and total water treatment system is evaluated. Phenol was highly volatile, easily oxidized by ozone, and readily absorbed onto GAC. When there was phenol of 0.3mg/L in water, by ozonation of 1mg/L or by GAC adsorption with EBCT of 10minutes or longer, it could be treated to lower than 0.005mg/L, the national drinking water standard of phenol. Even when a sufficient contact time(70minutes) was allowed, only 35 to 40% of phenol could be removed by powdered activated carbon(PAC). Based on the test results, it can be concluded that 1.0mg/L or less concentration of phenol can be treated at the plants adopting the combination process of ozone and GAC down to the safe level. In this study, removal characteristics for phenol were evaluated with the existing pilot plant and demo plant in different advanced water treatment processes(AWTPs). In the future, studies on changes in oxidation and adsorption characteristics caused by competitive matters such as DOC and removal characteristics by other various AWTPs including ozone/filter adsorber need to be performed.

Ozone-water Treatment on the Morphological Changes of Endosperm cell and the activity of Acid Phosphatase during Soybean(Glycine max) Germination (대두 발아중 오존수 처리가 acid phoshatase 및 배유세포의 형태학적인 변화)

  • 박홍덕
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.489-495
    • /
    • 2001
  • The effect of ozone-water treatment on the morphological change of endosperm cells and the activity of acid phosphatase during Glycine max germination was investigated with electron microscope. Acid phosphatase showed the activity in the cell organelles of germinating endosperm of seed. it's activity occurrs in 12 hrs cultivation after 0.5 ppm ozone-water treatment. As the differentiation of endosperm, reaction products of the acid phosphatase appear to be accumulated invacuole after treatment of ozone-water. This result confirm that acid phosphatase is inveolved in the decomposition and translation of the intracellular storage materials. The characteristics of grganelle in the endosperm cell during germination were discussed.

  • PDF

ORGANIC POLLUTANTS DEGRADATION USING PULSELESS CORONA DISCHARGE: APPLICATION IN ULTRAPURE WATER PRODUCTION

  • Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.144-154
    • /
    • 2005
  • The use of ozone gained acceptance in the production of ultrapure water because of its powerful oxidizing ability. Ozone is currently used to deactivate microorganisms and remove organic contaminants. However, interest also exists in using radical species, which arc stronger oxidants than ozone, in such processes. One means of producing radical species is by corona discharge. This work investigates the use of a novel pulseless corona-discharge system for the removal of organic substances in ultrapure water production. The method combines corona discharge with electrohydrodynamic spraying of oxygen, forming microbubbles. Experimental results show that pulseless corona discharge effectively removes organics, such as phenol and methylene blue, in deionized water. The corona-discharge method is demonstrated to be comparable to the direct use of ozone at a high-applied voltage. The results also show that a minimum applied voltage exists for operation of the corona-discharge method. In this work, the minimum applied voltage is approximately 4.5 kV. The kinetic rate or phenol degradation in the reactor is modeled. Modeling results show that the dominant species of the pulseless corona-discharge reactor are hydroxyl radical and aqueous electron. Several radical species produced in the pulseless corona-discharge process are identified experimentally. The. major species are hydroxyl radical, atomic hydrogen species, and ozone.

An Experimental Study on the Permeability Evaluation of Metal Spray System by Concrete Surface Treatment (콘크리트 표면처리방법에 따른 금속용사 피막의 투수성 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.34-35
    • /
    • 2015
  • Recently, introduction of Advanced water treatment facilities has been increasing due to serious domestic water pollution. Ozone is a strong oxidizing materials in the advanced water treatment facilities. However, due to such a strong oxidation, Ozone eroded waterproofing/corrosion on the concrete surface and caused performance degradation. Therefore, in this study, permeability experiment of metal spraying system by concrete surface treatment was conducted.

  • PDF

Reclamation of Effluent Textile Wastewater Using Micro/nano Bubbles-Dissolved Ozone Flotation Process (초미세기포-용존오존부상(DOF)공정을 이용한 염색폐수 처리수의 재이용)

  • Jung, Byung-Gil;Lee, Ki-Hyung;Jung, Jin-Hee;Jang, Seong-Ho;Cho, Do-Hyun;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.291-299
    • /
    • 2011
  • The main objectives of this research are to investigate characteristics of ozone solubility due to low solubility of conventional bubbles-ozone generators, evaluate the treatment characteristics of reclaiming textile wastewater for industrial water by means of micro/nano bubbles-dissolved ozone flotation(MNB-DOF) process. The textile wastewater used in this research was obtained from final effluent of the textile wastewater in B city. There is a 400L reactor which consists of a micro-nano bubble system and a ozone generator for experiments. As a result of generating micro-nano bubbles (below $0.5{\mu}m$) by using of MNB-DOF process, it improved ozone solubility due to higher ozone transfer rates. Consequently, the shorter ozonation time clearly indicates the lower power costs. The reported results clearly indicated that MNB-DOF process can be effectively and inexpensively. Results of the experiments through MNB-DOF process in this study satisfy all reclaiming standards as industrial water: pH 6.5~8.5, SS 10 mg/L or below, $BOD_5$) 6 mg/L or below, turbidity 10 NTU or below, Coliforms 1,000/100 mL or below. Therefore there is a possibility of the reclaiming of the textile wastewater as industrial water.

The Development of Ozone Generation System with High Capacity for Advanced Water Treatment Process (고도정수처리용 대용량 오존발생시스템 개발)

  • Lee, Hyeong-Ho;Kim, Young-Bae;Seo, Kil-Soo;Cho, Kook-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2001-2003
    • /
    • 1999
  • Recently the ozone generation system is well used for cleaning the contaminated water by using the strong oxidization effects of ozone. Ozone generation system is composed of ozone generation device, air or oxygen supply device and high voltage apply device. In this paper, commercial frequency was applied to the wire typed conductor. The ozone concentration was measured with air or oxygen as a supplied gas, which can be used as basic data for the development of ozonizer system.

  • PDF

Effect of Ozone and UV Treatment of Groundwater on the Quality of Wine (지하수의 오존과 UV처리가 탁주의 품질특성에 미치는 영향)

  • Park, Young-Gyu;Kim, Hee-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.255-261
    • /
    • 2004
  • Experiments using ozone are presented for the water purification and wine quality improvement. Advanced oxidation process results reveal water treatment by both ozone and UV radiation increases quality of the takju prepared using a Korean conventional nuruk than with ozone-treatment or convectional method only. Water quality was enhanced by ozone treatment, resulting in 85% reduction of hardness, and 30% increase in total glucose produced due to increased conductivity and biodegradability of water. Although initially decreased slightly due to oxidation of takju, higher than expected ethanol production was observed, with ozone plus UV treatment resulting in 20% higher production compared with other methods.

Study on the Removal of Fluorescent Whitening Agent for Paper-mill Wastewater Reuse using the Submerged Membrane Bioreactor(SMBR) with Ozone Oxidation Process (제지폐수 재이용을 위한 침지형 생물막 여과와 오존산화공정(SMBR-Ozone Oxidation Process)에 의한 형광증백제 제거에 관한 연구)

  • Choi, Jang-Seung;Shin, Dong-Hun;Ryu, Seung-Han;Lee, Jae-Hun;Ryu, Jae-Young;Shin, Won-Sik;Lee, Seul-Ki;Park, Min-Soo;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.30 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • In this study, effluent water was produced through Submerged Membrane Bio-Reactor(SMBR) process, which is a simple system and decomposes organic matter contained in wastewater with biological treatment process and performs solid-liquid separation, Especially, ozone oxidation treatment process is applied to effluent water containing fluorescent whitening agent, which is a trace pollutant which is not removed by biological treatment, and influences the quality of reused water. The concentration of $COD_{Cr}$ in the SMBR was $449.3mg/{\ell}-COD_{Cr}$, and the concentration of permeate water was $100.3mg/{\ell}-COD_{Cr}$. The removal efficiency was about 70.1%. The amount of ozone required for the removal of the fluorescent whitening agent in the permeated water in SMBR was $6.67g-O_3/min$, and the amount of ozone required to remove $COD_{Mn}$ relative to the permeate water was calculated to remove $0.997mg-COD_{Mn}$ for 1mg of $O_3$.