• Title/Summary/Keyword: ozone cell

Search Result 76, Processing Time 0.028 seconds

Heterojunction Solar Cell with Carrier Selective Contact Using MoOx Deposited by Atomic Layer Deposition (원자층 증착법으로 증착된 MoOx를 적용한 전하 선택 접합의 이종 접합 태양전지)

  • Jeong, Min Ji;Jo, Young Joon;Lee, Sun Hwa;Lee, Joon Shin;Im, Kyung Jin;Seo, Jeong Ho;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.322-327
    • /
    • 2019
  • Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[$Mo(CO)_6$] as precursor and ozone($O_3$) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the $Mo^{6+}$ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from $576^{\circ}C$ to $620^{\circ}C$ at 250 g/Nm after post-deposition annealing at $350^{\circ}C$ in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.

Fabrication of Bi-superconducting Thin Films by Layer-by-layer Sputtering Method (순차 스퍼터법에 의한 Bi-초전도 박막의 제작)

  • 심상흥;양승호;박용필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.613-616
    • /
    • 2001
  • Bi$_2$Sr$_2$CuO$_{x}$ thin films have been fabricated by atomic layer-by-layer deposition using ion beam sputtering(IBS) method. During the deposition, 10 and 90 wt%-ozone/oxygen mixture gas of typical pressure of 1~9$\times$10$^{-5}$ Torr are supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.n.

  • PDF

Epitaxial Growth of BSCCO Films by Leyer-by-Layer Deposition (순차 증착에 의한 BSCCO 박막의 에피택셜 성장)

  • 안준호;박용필;김정호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.855-860
    • /
    • 2001
  • Bi$_2$Sr$_2$CuO$_{x}$(Bi-2201) thin film were fabricated by atomic layer-by -layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed oxygen were used with ultraviolet light irradiation to assist oxidation. XRD and RHEED investigations revealed that a buffer layer is formed at the early stage of deposition (less than 10 unit cell), and then c-axis oriented Bi-2201 grows on top of it.t.

  • PDF

Layer-by-layer Deposition of BSCCO Thin Films Using Ion Beam Sputtering Method (이온 빔 스퍼터법에 의한 BSCCO 박막의 순차 증착)

  • 박용필;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.334-339
    • /
    • 1998
  • $Bi_2Sr_2CuO_x$(Bi-2201) thin films have been fabricated by atomic layer-by-layer deposition using ion beam sputtering (IBS) method. During the deposition, 14 wt%-ozone/oxygen mixture gas of typical pressure of $5.0\times10^{-5}$ Torr is supplied with ultraviolent light irradiation for oxidation. XRD and RHEED investigations reveal that a buffer layer with compositions different from Bi-2201 is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.

  • PDF

Epitaxial Growth of BSCCO Type Structure in Atomic Layer by Layer Deposition by Ion Beam Sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Kim, Jeong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.7-10
    • /
    • 2000
  • Bi$_2$Sr$_2$CuI$\_$x/(Bi(2001)) thin films are fabricated by atomic layer by layer deposition using ion beam sputtering(IBS) method. During the deposition , 10 %-ozone/oxygen mixture gas of typical 25.0$\times$10$\^$-5/ Torr is applied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less then 10 units cell and then c-axis oriented Bi(2201) is grown.

  • PDF

Epitaxy Growth of the Thin Films Fabricated by Layer by Layer Method (Layer by Layer 법으로 제작한 박막의 에피택셜 성장)

  • Kim, Tae-Gon;Cheon, Min-Woo;Yang, Sung-Ho;Park, Yong-Pil;Park, No-Bong;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.529-530
    • /
    • 2006
  • $Bi_2Sr_2CuO_x$ thin films have been fabricated by atomic layer-by-layer deposition using the ion beam sputtering method. During the deposition, 10 and 90 wt%-ozone/oxygen mixture gas of typical pressure of $1{\sim}9{\times}10^{-5}\;Torr$ are supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.

  • PDF

A Study on the I-V and I-P Characteristics for Optimized Operation of PEMFC (고분자 전해질형 연료전지의 최적운전을 위한 전압-전류, 전류-전력 특성 연구)

  • Jung, You-Ra;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.112-116
    • /
    • 2010
  • Fuel cell as a renewable energy source is clean and has a lot of advantages. The source can solve energy crisis and environmental problems such as greenhouse effect, air pollution and the ozone layer destruction. This paper introduces hybrid system(hydro-Genius Professional, heliocentris) of solar cell and fuel cell. Also, this paper shows the I-P, V-I characteristics of fuel cells which are connected in parallel and series. From these results, we also found the maximum power was transferred at 0.5[${\Omega}$]. The terminal voltage was also decreased according to the current because of the internal resistance. The power transfer in series was two times than that in parallel.

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.

Sterilization of Seawater for the Ballast Water Management System (선박평형수 관리시스템을 위한 해수 살균법)

  • YUN, YONGSUP;CHOI, JONGBEOM;KANG, JUN;LEE, MYEONGHOON
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.172-172
    • /
    • 2016
  • The International Maritime Organization(IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004 to prevent the transfer of aquatic organisms via ballast water. Forty ballast water treatment systems were granted final approval. A variety of techniques have been developed for ballast water treatment including UV treatment, indirect or direct electrolysis, ozone treatment, chemical compounds and plasma-arc method. In particular, using plasma and ozone nano-bubble treatments have been attracted in the fields. However, these treatment systems have a problem such as remained toxic substance, demand for high power source, low efficiency, ets. In this paper, we present our strilization results obtained from membrane type electrolytic-reduction treatment system The core of an electrolysis unit is an electrochemical cell, which is filled with pure water and has two electrodes connected with an external power supply. At a certain voltage, which is called critical voltage, between both electrodes, the electrodes start to produce hydrogen gas at the negatively biased electrode and oxygen gas at the positively biased electrode. The amount of gases produced per unit time is directly related to the current that passes through the electrochemical cell. From the results, we could confirm the sterilization effect of bacteria such as S. aureus, E. Coli and demonstrate the mechanism of sterilization phenomena by electrolytic-reduction treatment system.

  • PDF

A Study on the Sludge Reduction and Biogas Production through a Two-phase Anaerobic Digestion Process (이상 혐기성 소화 공정을 통한 슬러지 발생량 저감과 바이오가스 생산에 관한 연구)

  • Woo, Mi-Hee;Han, Gee-Bong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.894-899
    • /
    • 2010
  • We coordinated the experiments with ozone pretreatment and two-phase anaerobic digestion using solid-liquid separation to raise the efficiency of sludge volume reduction and obtained the following results. The pre-treatment with ozone reduced the solid concentration in the average of TSS $8.3{\pm}2.0%$ TSS and $9.2{\pm}}2.8%$ VSS. Of the organic material, TCOD decreased $5.1{\pm}2.4%$, but SCOD showed $72{\pm}6.5%$ increased, which was due to destruction of the cell wall and dissolution of icell media by the powerful oxidative stress of ozone. During the two-phase anaerobic digestion process, we achieved the reduction of $21.5{\pm}3.4%$ TSS, $20.2{\pm}8.4%$ VSS, $32.1{\pm}7.9%$ TCOD and $22.1{\pm}7.2%$ SCOD in average. The maximum methane gas production were 177.6 mL per g TSS, 210.8 mL per g VSS, 127.0 mL per g TCOD and 1452.0 mL per g SCOD, respectively. Solid material reduction through the two-phase anaerobic digestion and MLE (Modified Ludzack-Ettinger) processes were 93.8% of TSS and 92.0% of VSS. We concluded that suggested two-phase anaerobic digestion and MLE process could achieve the reasonable production of biogas and a maximum reduction of the sludge volume.