• Title/Summary/Keyword: oxygenates

Search Result 28, Processing Time 0.021 seconds

The Evaluation of Solid-Phase Microextraction(SPME) Techniques for Analyzing Mixed Fuel Oxygenates and Products

  • 이재선;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.458-461
    • /
    • 2003
  • Solid-phase microextraction (SPME) and gas chromatography/headspace techniques(HS) and flame ionization detection (GC/FID) have been combined for determination of very polar compounds in water, including the widely used gasoline oxygenates and by-products. A relatively simple extraction method using a CAR/PDMS(75${\mu}{\textrm}{m}$) SPME fiber was optimized for the routine analysis of gasoline oxygenates and by-products in groundwater and reagent water. A sodium chloride concentration of 25%(w/w) combined with an extraction time of 20 min provided the greatest sensitivity while maintaining analytical efficiency Replicate analyses in fortified reagent and groundwater spiked with microgram per liter concentrations of gasoline oxygenates and by-products indicate quantitative and reproducible recovery of these and related oxygenate compounds. Method dynamic range was 50$\mu\textrm{g}$ L-1 to 3000$\mu\textrm{g}$ L-1 for gasoline oxygenates and by-products.

  • PDF

The $CO_{2}$ Hydrogenation toward the Mixture of Methanol and Dimethyl Ether: Investigation of Hybrid Catalysts

  • 준기원;K.S. Rama Rao;정미희;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.466-470
    • /
    • 1998
  • Catalytic hydrogenation of carbon dioxide for the simultaneous synthesis of methanol and dimethyl ether (together called oxygenates) over a combination of methanol synthesis and methanol dehydration catalysts has been studied. Various methanol synthesis and methanol dehydration catalysts were examined for this reaction. The addition of promotors like $Ga_2O_3\; and\; Cr_2O_3$ to Cu/ZnO catalyst gave much more enhanced yield on the formation of oxygenates. From the results, the promotional effect of $Cr_2O_3$ has been explained in terms of increase in the intrinsic activity of Cu while that of $Ga_2O_3$ being increase in the dispersion of Cu. Among the methanol dehydration catalysts examined, the solid acids bearing high population of intermediate-strength acid sites were found to be very effective for the production of oxygenates. HY zeolite which contains strong acid sites produce small amount of hydrocarbons as by-products. However, CuNaY zeolite in which the presence of strong acid sites are minimum gives very high oxygenates yield without the formation of hydrocarbons.

Biodegradation of Potential Diesel-Oxygenate Additive Including DBM(DiButyl Maleate) (DBM(DiButyl Maleate)을 포함한 잠재적 디젤첨가제 생분해특성)

  • Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.65-71
    • /
    • 2010
  • In this study, we have evaluated biodegradability of diesel-oxygenates including DBM and gasoline-oxygenates having similar physio-chemical properties using indigenous aerobic microorganisms from a diesel-contaminated soil. Toluene and Ethanol have shown higher biological activity and the first-order degradation rate constants ranged around $0.11{\sim}0.3day^{-1}$. However, MTBE, gasoline-oxygenate has shown as a limited substrate. Moreover, As increased initial concentrations of DBM and TGME, degradation rates of those were decreased relatively. As a strategy to evaluate biodegradability of DBM and TGME, reduction of diesel-oxygenates, $CO_2$ production and toxicity by algae were monitored. This results indicated possible mineralization of diesel-oxygenates, But we could predict that residual byproduct produced even though complete consumption of diesel-oxygenates were observed if algal toxicity variation considered. In conclusion, it is the first report that diesel-oxygenates including DBM could be biodegraded effectively by indigenous soil microorganisms and this result increased the possibility of bioremediation technology to apply into oil-contaminated sites.

A Study on Performance Characteristics of the Diesel Engine using High Viscous Oils by blending Low Boiling Point Oxygenates (저비점 함산소물질 혼합에 의한 고점도유 사용 디젤기관의 성능특성 연구)

  • ;Noboru Miyamoto
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.44-51
    • /
    • 2003
  • By blending of various low boiling point oxygenated agents to lower grade fuels, significant improvements were simultaneously obtained in smoke, CO, PM, SOF and BSEC. Especially, our trends were remarkably obtained by retarding injection timing, by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than non-oxygenated agents. Also, it was revealed that when 20vo1.% DMM added to high viscosity fuels and injection timing was retarded, NOx-smoke trade off relationship was much better than that of ordinary diesel fuel. Thus, lower grade fuels with high viscosity could be expected to be used efficiently and cleanly in diesel operation by blending low boiling point oxygenates.

The Effect of Low Boiling Point Oxygenates on the Diesel Engine Performance and Emissions (저비점 함산소물질이 디젤기관의 성능과 배기배출물에 미치는 영향)

  • 김봉석;송용식;궁본등
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.20-27
    • /
    • 2004
  • In the study, the effect of low boiling point oxygenates in high viscous fuels on the exhaust emissions has been investigated for a single cylinder DI diesel engine. It was tested to estimated change of engine performance and exhaust emission characteristics for the base fuels and low boiling point oxygenates blended fuel which have six kinds of fuels and various mixed rates. The results of the study may be con eluded as follows By blending of various low boiling point oxygenated agents to lower grade fuels, significant improvements were simultaneously obtained in smoke, CO, PM, SOF and BSEC. Especially, these trends were remarkably obtained by retarding injection timing, by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than non-oxygenated agents. Also, it was revealed that when 20 vol.% DMM added to high viscosity fuels and injection timing was retarded, Nox-smoke trade off relationship was much better than that of ordinary diesel fuel. Thus, lower grade fuels with high viscosity could be expected to be used efficiently and cleanly in diesel operation by blending low boiling point oxygenates.

Biodegradation Study of Gasoline Oxygenates by Butane-Utilizing Microorganisms (부탄 분해 미생물을 이용한 휘발유 첨가제의 분해특성)

  • 장순웅
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this study, potential degradation of MTBE and other gasoline oxygenates by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using butane as the sources of carbon and energy was examined and compared. Butane monooxygenases(BMO) of butane-grown ENV425 and mixed culture generated 1-butanol as a major metabolite of butane oxidation and addition of acetylene, specific inhibitor of monooxygenase, inhibited both butane oxidation and 1-butanol production. The results described in this study suggest that alkanes including propane, pentane, and butane are effectively utilized as a growth substrate to oxidize MTBE cometabolically. And also BTEX compounds could be the potential substrate of the MTBE cometabolism. Cell density also affected on the MTBE degradation and transformation capacity(Tc). Increasing cell density caused increasing MTBE degradation but decreased transformation capacity. Other result demonstrated that MTBE and other gasoline oxygenates, ETBE and TAME, were degraded by butane-grown microorganism.

Development of analytical method for potential diesel oxygenate using SPME technique combinded with GC-FID

  • 이규현;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.354-357
    • /
    • 2004
  • The addition of oxygenates to diesel fuel can significantly reduce particulate emissions. Dibutyl maleate (DBM) and tripropylene glycol methyl ether (TGME) have been identified as possible additives based on their physicochemical characteristics and performance in engine test. However, their potential environmental impacts are unknown. therefore, practical considerations in the selection of an oxygenate additives should include cost, availability, compatibility with engines and fuel, and, particularly, its overall environmental impact. This study was investigated to determine optimal condition for the analysis of potential diesel oxygenates using SPME technique with GC-FID. Four fibers were compared and CAR/PDMS fiber was found to be the most sensitive when used direct-sampling. An absorption time of 30min and a desorption time of 5min provided to be the most sensitivity. The effects of experimental parameters such as the addition of salts, agitation, absorption time, compositon on the analysis were investigated. Analytical parameter such as linearity was also evaluated.

  • PDF

Characteristics of Exhaust Emission by the Application of Biodiesel Fuel and Oxygenates as an Alternative Fuel in an Agricultural Diesel Engine (농업용 디젤기관 대체연료로서 바이오디젤유와 함산소제 적용시의 배기배출물 특성)

  • Choi, S.H.;Oh, Y.T.;So, J.D.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.457-462
    • /
    • 2006
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions from diesel engine are recognized main cause which influenced environment strong. In this study, the potential possibility of biodiesel fuel and oxygenates additives (dimethoxy methane) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel (biodiesel fuel 90vol-% + DMM 10vol-%) was reduced in comparison with diesel fuel, that is, it was reduced approximately 70% at 2500 rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, NOx emissions from biodiesel fuel and DMM blended fuel were increased compared with commercial diesel fuel.

A Study on Characteristics for Exhaust Emission with Oxygenated Fuel in an Agricultural DI Diesel Engine (농업용 직접분사식 디젤기관에서 함산소연료 적용시 배기배출물 특성 연구)

  • Choi, S.H.;Oh, Y.T.;So, J.D.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.279-283
    • /
    • 2007
  • In this study, the potential possibility of oxygenates on di-ether group (DBE, dibutyl ether) was investigated as an additives for an agricultural direct injection diesel engine. It tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenates additives blending fuel which has four kinds of mixed ratio. The smoke emission of blending fuel (diesel fuel 80 vol-% + DBE 20 vol-%) was reduced in comparison with diesel fuel, that is, it was reduced approximately 26% at 2500 rpm, full load. And, power, torque and brake specific energy consumption didn't have large differences. But, NOx emission of blended fuel was increased compared with commercial diesel fuel.