• Title/Summary/Keyword: oxygen uptake

Search Result 370, Processing Time 0.031 seconds

Cellulose Nanocrystals Incorporated Poly(arylene piperidinium) Anion Exchange Mixed Matrix Membranes (셀룰로오스 나노 결정을 도입한 폴리아릴렌 피페리디늄 음이온 교환 복합매질분리막)

  • Da Hye Sim;Young Park;Young-Woo Choi;Jung Tae Park;Jae Hun Lee
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.154-162
    • /
    • 2024
  • Anion exchange membranes (AEMs) are essential components in water electrolysis systems, serving to physically separate the generated hydrogen and oxygen gases while enabling the selective transport of hydroxide ions between electrodes. Key characteristics sought in AEMs include high ion conductivity and robust chemical and mechanical stability in alkaline. In this study, quaternized Poly(terphenyl piperidinium)/cellulose nanocrystals (qPTP/CNC) mixed matrix membrane was fabricated. The polymer matrix, PTP, was synthesized via super-acid polymerization, known for its excellent ion conductivity and alkaline durability. The qPTP/CNC membrane showed a dense and uniform morphology without significant voids or large aggregates at the polymer-nanoparticle interface. The qPTP/CNC membrane containing 2 wt% CNC demonstrated a high ion exchange capacity of 1.90 mmol/g, coupled with low water uptake (9.09%) and swelling ratio (5.56%). Additionally, the qPTP/CNC membrane showed significantly lower resistance and superior alkaline stability (384 hours at 50℃ in 1 M KOH) compared to the commercial FAA-3-50 membrane. These results highlight the potential of hydrophilic additive CNC in enhancing ion conductivity and alkaline durability of ion exchange membranes.

The Relationship of $VO_2$Max/Min in Cardiopulmonary Exercise Test and Fat Distribution (운동부하심폐기능검사상의 분당최대산소섭취량과 체내 지방분포와의 상관관계)

  • Choi, Jae-Chol;Jee, Hyun-Suk;Park, Young-Bum;Park, Sung-Jin;Yoo, Jee-Hoon;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung-Whui;Hue, Sung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.4
    • /
    • pp.495-501
    • /
    • 2000
  • Background : Cardiopulmonary exercise test is a useful test for the evaluation of the cardiovascular and respiratory systems. Obese subjects have an increased resting metabolic rate ($VO_2$) compared to non~obese subjects and the increase is more marked during dynamic exercise, which results in the limitation of maximal exercise in obese subjects. In this study, the influence of the obesity and fat distribution on the maximal exercise capacity were evaluated. Methods : Maximal exercise capacity was represented by maximam maximum oxygen uptake and $VO_2$ max in the cardiopulmonary test. Obesity, total fat content and abdomina1 obesity(waist to hip ratio, WHR) were measured by bioelectrical impedence method. Total of 42 volunteers (male 22, fema1e 20) were evaluated. Results : 1) Weight to height ratio (mean$\pm$SD) was 110$\pm$14.9% in men and 100$\pm$11.1% in women. 2) Fat ratio (mean$\pm$SD) was 23.3$\pm$5.2% in men and 27.55$\pm$3.9% in woman. 3) Waist to hip ratio (mean$\pm$SD) was 0.85$\pm$0.04 in men and 0.8$\pm$0.03 in woman. 4) In men, $VO_2$ max/min/Kg was negatively correlated with obesity, fat ratio, and abdominal fat distribution. 5) In woman, $VO_2$ max/Kg was negatively correlated with obesity and fat ratio, but did not show significant relationship with abdominal fat distribution. Conclusion : Obesity was a limiting factor for maximal exercise in both men and women. Abdominal obesity was a limiting factor for maximal exercise in men but its implication to women needs further evaluation.

  • PDF

Persimmon Vinegar Ingestion before Endurance Exercise on Energy Substrates Utilization (지구성 운동전 감식초 섭취시 에너지기질의 이용)

  • Seo, Hyobin;Nam, Ju-Ock;Jeon, Byung-Duk;Kim, Pan-Gi;Ryu, Sungpil
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.626-634
    • /
    • 2012
  • The purpose of this study was to investigate the potential of persimmon vinegar as a functional beverage by analyzing the effects of persimmon vinegar ingestion on the energy substrate during endurance exercise. The healthy male adolescents (n=8) drunk persimmon vinegar ingested trial (PSV) or purified water ingested trial as the control trial (CON) 1 h prior to the exercise with the 60% of maximal oxygen uptake ($\dot{V}O_{2max}$) for 1 h. The exercise intensity was increased to the 80% of $\dot{V}O_{2max}$ and remained until exhaustion. And, the physiological variables, blood components, and amounts of energy oxidation were analyzed. There was no significant difference between trials in physiological variables, and the heart rates after exhaustion were higher in PSV compared to CON. There was no significant difference between trials in blood glucose level, while the blood lactic acids decreased significantly in PSV 30 and 60 minutes after onset of exercise. The free fatty acids concentration increased significantly in PSV from 15 minutes to 60 minutes after onset of exercise. The carbohydrate oxidation decreased significantly in PSV from 45 minutes after exercise and, on the contrary, the fatty acids oxidation increased significantly for the same period. And, fatty acids oxidation was higher in PSV compared to CON even after exhaustion. The respiratory exchange ratio was lower significantly in PSV compared to CON from 30 minutes to 60 minutes after exercise, whereas lower in CON after total exhaustion. The exercise time to exhaustion was 41% longer in PSV compared to CON. These results showed that the persimmon vinegar increase the level of lipids metabolism and decrease sense of fatigue by inhibiting carbohydrate oxidation during moderate intensity exercise, suggesting the possibility of using of persimmon vinegar as exercise functional beverage when ingested 1 h prior to the endurance exercise performance.

Effect of 5 Week Long High-Fat Diet on Energy Metabolic Substrate Utilization and Energy Content Evaluation of Dietary Fat (5주간의 고지방식이 섭취시 흰쥐의 에너지 대사 기질 이용과 식이지방에너지 평가에 관한 연구)

  • Hwang, Hye-Jung;Kim, Ji-Su;Suh, Hea-Jung;Lim, Ki-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1094-1099
    • /
    • 2012
  • This study investigated the effect of a long-term high-fat diet on energy metabolic substrate utilization in resting rats in order to revalue source fat energy efficiency during a high-fat diet and its effect on energy expenditure and body fat accumulation. Sprague-Dawley male rats at 4 weeks of age were bought from Orient Bio Con. The rats were divided into a control (CON) group and a high-fat diet (HF) group. Rats ate a high-fat diet (w/w 40%, kcal/kcal 64.9%) ad libitum for 5 weeks. Food intake and body weight were measured every day at 09:00 throughout the experimental period. Energy expenditure was measured using an animal energy metabolism chamber after 4 weeks. The final body weight did not change between the CON and HF groups, but caloric intake was significantly higher in the HF group than in the CON group (p<0.05). There was no difference between the groups in oxygen uptake, however carbon dioxide production was significantly higher in the HF group. Also, the respiratory exchange ratio was higher in the HF group. Carbohydrate oxidation was lower in the HF group than in the CON group, but fat oxidation in the HF group was greater. These results mean that energy substrate oxidation at rest is affected by diet composition, especially dietary fat content. Abdominal fat fad weights were significantly higher by 33% in the HF group than in the CON group even though the calorie intake in the HF group was higher by 6%. These results suggested that the dietary fat calorie value might have a higher Atwater value of 9 kcal/g, which mean that dietary fat calorie values could be reconsidered in body weight control scenarios such as which the obese or weight class athletes.

The Effects of High-intensity Combined Training Program on Cardiorespiratory Function, Isokinetic Trunk Strength and Anaerobic Power of Canoe Athletes (고강도 복합 훈련 프로그램이 카누선수의 심폐기능, 체간 등속성 근력과 무산소성 파워에 미치는 영향)

  • Jung, Jong-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.17-27
    • /
    • 2020
  • The purpose of this study is to confirm the effects of a 6-week high-intensity combined training program on canoe athletes' cardiorespiratory function, isokinetic trunk strength, and anaerobic power. For the purpose of this study, the high-intensity combined training program was applied to 9 high-school canoe athletes. The high-intensity combined training program consists of aerobic exercise performed 2 times a week (Tuesday and Thursday), anaerobic exercise performed 3 times a week (Monday, Wednesday, and Friday), and flexibility exercise performed 5 times a week. The core of the high-intensity combined training program was the anaerobic training program performed with 100% weight for repetition; otherwise, the existing training method was divided into the percentage (%) of the 1RM. The aerobic exercise and the gym ball exercise are performed subsidiarily. Results showed that there was a statistically significant difference in height and muscle mass, whereas there was no statistically significant difference in weight, body fat percentage, and BMI followed by the high-intensity combined training program. There were statistically significant differences in maximum oxygen uptake and total exercise time. The angular velocity of 30°/sec showed a statistically significant difference in the peak torque item of flexors only. Also, the angular velocity of 120°/sec showed a statistically significant difference in the total work item of extensors only; however, there was no statistically significant difference in all the items of peak power, average power, and peak drop. In conclusion, it seems that the high-intensity combined training program may be applied as a training program for enhancing canoe athletes' performance. For further studies, more than 6 weeks training program with more participants would show improved results of isokinetic strength and anaerobic power in athlets.

A Comprehensive Study on the Forced Aging of Flue-cured Tobacco-Leaves (황색종 잎담배의 발효숙성 촉진에 관한 종합적 연구)

  • Bae, H.W.
    • Applied Biological Chemistry
    • /
    • v.13 no.1
    • /
    • pp.1-27
    • /
    • 1970
  • The process of the forced aging of flue-cured tobacco leaves were studied extensively from various scientific points of view. The Flue-cured tobacco leaves were inoculated and fermented with nicotine resistant Hansenula yeast, or the leaves were subjected under simple forced aging. The above two processes of forced aging were studied from the summarized points of microbiology, physics, chemistry, and biochemistry, and the resulted products ware compared in their physical, chemical and biochemical quality determining factors with that of raw material tobacco leaves (dried-tobacco leaves) and 2 years aged high quality tobacco leaves. The summary results were as follows. 1) The Korean flue-cured tobacco leaves, were forcedly aged under the basic optimum aging condition, temperature $40^{\circ}C$, moisture contents 18%, relative humidity 74%. It was found that this aging condition was the best in bringing the quality of forcedly aged tobacco leaves to the utmost state. 2) Under this optimum temperature and moisture condition of forced aging in about 20 days the forcedly aged tobacco leaves both with yeast inoculation and without yeast inoculation showed the equivalent tobacco qualities comparable with that of more than 2 years aged tobacco leaves. 3) The forcedly aged tobacco leaves both with and without yeast inoculation under $40^{\circ}C$ temperature and $74^{\circ}C$ relative humidity achieved the necessary quality determining physical and chemical changes in about 20 days. 4) The microbial changes during the forced aging were as follows. The population of yeasts and bacteria increased until to 15 days of aging, then decreased thereafter. Whereas the molds grew continously until the end of fermentation. 5) The tobacco quality determing physico-chemico-properties of yeast inoculated aged and simple forcedly aged tobacco leaves, progressed as the follows in time. As the forced aging progresses, swelling and combustibility properties were improved. The pH, total reducing materials, total sugars, alkaloids contents decreased. The contents of organic and ether extractable materials increased. The total nitrogen, protein, crude fiber, ash contents showed no changes. The color properties, excitation purity, luminance, main wave length, showed equivalent changes comparable with that of 2 years aged tobacco leaves. 6) The changes in chemical components in yeast treated and simple forcedly aged tobacco leaves during $15{\sim}20{\;}days$ of forced aging were as follows. The following chemical components decreased as the aging. Sugars-sucrose. rhamnose, glucose. Pigments-chlorophyll, carotenes, xanthophyll and violax anthine. Polyphenols-rutin, chlorogenic and, coffeic acid. Organic acids-iso-butylic, crotonic, caprylic, galacturonic, tartaric, succinic, citric acid. Alkaloids-nicotine, nornicotine. The following components increased as the forced aging progressed. Sugars-frutose, maltose, raffinose. Amino acids-proline, cystine. Organic acids-formic, acetic, propionic, n-butyric, iso-valeric, n-valeric, malic, oxalic, malonic, ${\alpha}-ketoglutaric$, fumaric, glutaric acid. 7) During the forced aging of tobacco Leaves the oxygen-uptake decreased gradually. The enzyme activities of polyphenol oxidase, ${\beta}-amylase$ ${\alpha}-amylase$ decreased gradually. The activities of the enzymes, catalase, and invertase increased once then decreased at the later stage.

  • PDF

Variations in Ammonium Removal Rate with Tidal State in the Macrotidal Han River Estuary: Potential Role of Nitrification (한강기수역에서의 암모늄 제거율 변화 및 질산화의 잠재적 역할)

  • Hyun, Jung-Ho;Chung, Kyung-Ho;Park, Yong-Chul;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to understand the importance of tidal action and $NH_4{^+}$ -nitrification in the removal of dissolved oxygen (DO) and $NH_4{^+}$, concentrations of DO, $NH_4{^+}$, $NO_2{^-}$ and $NO_3{^-}$ were measured with time for water samples collected at different tidal state in the eutrophic macrotidal Han River estuary. Field measurements indicated that most environmental parameters, except for the water temperature and DO concentration, were tightly controlled by the eutrophic freshwater runoff and large-scale tidal action. Dark incubation of the water sample at $25^{\circ}C$ showed that the removal rates of DO and $NH_4{^+}$ in high tide sample were 2.76 ${\mu}M\;O_2\;d^{-1}$ and 1.76 ${\mu}M\;N\;d^{-1}$ respectively, and increased to 5.66 ${\mu}M\;O_2\;d^{-1}$ and 3.36 ${\mu}M\;N\;d^{-1}$ respectively, in low tide sample. These changes indicated that microbial degradation and uptake of organic matter and inorganic nutrients were more active during low tide. $NH_4{^+}$-nitrification responsible for total DO removal in low tide (23.81%) and $NH_4{^+}$ turnover rates due to $NH_4{^+}$-nitrification in low tide (0.18 $d^{-1}$) were approximately 3.7 times and 3 times, respectively, higher than those in high tide. These results indicated that $NH_4{^+}$ -nitrifying bacteria introduced into the Han River estuary during low tide played a significant role in the removal of DO and $NH_4{^+}$. The decreasing removal rates in DO and $NH_4{^+}$ with the increasing tidal level seemed to be associated with the salinity impact on the halophobic freshwater $NH_4{^+}$-nitrifying bacteria. The results implied that anthropogenic $NH_4{^+}$ sources should be treated prior to the freshwater runoff into the estuary for the effective control of $NH_4{^+}$ in the Han River estuary. These results also suggest that parallel ecological studies on the chemoautotrophic nitrifying bacteria are essential for the elucidation of nitrogen cycles in the eutrophic Han River estuary.

  • PDF

Neuroprotective effect of fermented ginger extracts by Bacillus subtilis in SH-SY5Y cells (고초균에 의한 생강 발효 추출물의 신경세포 보호 효과)

  • Yang, Hee Sun;Kim, Mi Jin;Kim, Mina;Choe, Jeong-sook
    • Journal of Nutrition and Health
    • /
    • v.54 no.6
    • /
    • pp.618-630
    • /
    • 2021
  • Purpose: The ginger rhizome (Zingiber officinale) is widely cultivated as a spice for its aromatic and pungent components. One of its constituents, 6-hydroxydopamine (6-OHDA) is usually thought to cross the cell membrane through dopamine uptake transporters, and induce inhibition of mitochondrial respiration and the generation of intracellular reactive oxygen species (ROS). This study examines the neuroprotective effect and acetylcholinesterase (AChE) inhibitory activity of fermented ginger extracts (FGEs) on 6-OHDA induced toxicity in SH-SY5Y human neuroblastoma cells. Methods: Ginger was fermented using 2 species of Bacillus subtilis, with or without enzyme pretreatment. Each sample was extracted with 70% ethanol. Neurotoxicity was assessed by applying the EZ-Cytox cell viability assay and by measuring lactic dehydrogenase (LDH) release. Morphological changes of apoptotic cell nuclei were observed by Hoechst staining. Cell growth and apoptosis of SH-SY5Y cells were determined by Western blotting and enzyme activity analysis of caspase-3, and AChE enzymatic activity was determined by the colorimetric assay. Results: In terms of cell viability and LDH release, exposure to FGE showed neuroprotective activities against 6-OHDA stimulated stress in SH-SY5Y cells. Furthermore, FGE reduced the 6-OHDA-induced apoptosis, as determined by Hoechst staining. The occurrence of apoptosis in 6-OHDA treated cells was confirmed by determining the caspase-3 activity. Exposure to 6-OHDA resulted in increased caspase-3 activity of SH-SY5Y cells, as compared to the unexposed group. However, pre-treatment with FGE inhibited the activity of caspase-3. The neuroprotective effects of FGE were also found to be caspase-dependent, based on reduction of caspase-3 activity. Exposure to FGE also inhibited the activity of AChE induced by 6-OHDA, in a dose-dependent manner. Conclusion: Taken together, our results show that FGE exhibits a neuroprotective effect in 6-OHDA treated SH-SY5Y cells, thereby making it a potential novel agent for the prevention or treatment of neurodegenerative disease.

Prediction of Maximal Oxygen Uptake Ages 18~34 Years (18~34 남성의 최대산소 섭취량 추정)

  • Jeon, Yoo-Joung;Im, Jae-Hyeng;Lee, Byung-Kun;Kim, Chang-Hwan;Kim, Byeong-Wan
    • 한국체육학회지인문사회과학편
    • /
    • v.51 no.3
    • /
    • pp.373-382
    • /
    • 2012
  • The purpose of this study is to predict VO2max with body index and submaximal metabolic responses. The subjects are consisted of 250 male aging from 18 to 34 and we separated them into two groups randomly; 179 for a sample, 71 for a cross-validation group. They went through maximal exercise testing with Bruce protocol, and we measured the metabolic responses in the end of the first(3 minute) and second stage(6 minute). To predict VO2max, we applied multiple regression analysis to the sample with stepwise method. Model 1's variables are weight, 6 minute HR and 6 minute VO2(R=0.64, SEE=4.74, CV=11.7%, p<.01), and the equation is VO2max(ml/kg/min)= 72.256-0.340(Weight)-0.220(6minHR)+0.013(6minVO2). Model 2's variables are weight, 6 minute HR, 6 minute VO2, and 6 minute VCO2(R=0.67, SEE=4.59, CV=11.3%, p<.01), and the equation is VO2max(ml/kg/min)= 68.699-0.277(Weight) -0.206(6minHR)+0.020(6minVO2)-0.009(6minVCO2). And the result did not show multicolinearity for both models. Model 2 demonstrated more correlation compared to Model 1. However, when we conducted cross-validation of those models with 71 men, measured VO2max and estimated VO2 Max had statistical significance with correlation (R=0.53, 0.56, P<.01). Although both models are functional with validity considering their simplicity and utility, Model 2 has more accuracy.

The Development of Prediction Equation for Estimating VO2max from the 20 m PSRT in Korean Middle-School Girls. Exercise Science (20 m 점증 왕복달리기 검사를 이용한 여중생의 VO2max 추정식 개발)

  • Park, Dong-Ho;Song, Jung-Ran;Lee, Sang-Hyun;Kim, Chang-Sun
    • Exercise Science
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • The purpose of this study was to develop and validate regression models to estimate maximal oxygen uptake (VO2max) from the 20 m Progressive Shuttle Run Test (20 m PSRT) in Korean middle-school girls aged 13-15 years. The 20 m PSRT and VO2max were assessed in a sample of 194 participants. The sample was randomly split into validation (n=127) and test-retest reliability (n=99, 32 out of 127 participants also performed validity test) groups. 127 participants performed a graded exercise test (GXT, stationary gas analyser) and the 20 m PSRT (portable gas analyser) once to develop a VO2max prediction model and to analyze the validity of the modified 20 m PSRT protocol (starting at 7.5 km/h and increasing by 0.5 km/h every 1 min). 99 participants performed the 20 m PSRT twice for test-retest reliability purpose. Mean measured VO2max (39.2±5.1 ml/kg/min) from the potable gas analyzer was significantly increased from that measured during the GXT from stationary gas analyzer (37.7±5.7 ml/kg/min, p=.001) using the modified 20 m PSRT protocol. But it was a narrow range (1.5 ml/kg/min). The measured VO2max from the potable and stationary gas analyzers correlated at r=.88(p<.001). Test-retest of the 20 m PSRT yielded comparable results (Laps r=.88 & final speed r=.85). New regression equations were developed from present data to predict VO2max for middle-school girls: y=.231×Laps-.311×weight(in kg)+46.201 (r=.74, SEE=4.29 ml/kg/min). It is concluded that (a) the modified 20 m PSRT protocol is a valid and reliable test and (b) this equation developed in this study provides valid estimates of VO2max of Korean middle-school girl aged 13-15 years.