• Title/Summary/Keyword: oxygen transfer rate

Search Result 218, Processing Time 0.033 seconds

Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor (합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자 선정)

  • Ryu, Ho-Jung;Kim, Ji-Woong;Jo, Wan-Kuen;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.506-514
    • /
    • 2007
  • To select the best oxygen carrier particle for syngas fueled chemical-looping combustor, the reduction reactivity and carbon deposition characteristics were determined in a thermogravimetric analyzer. Four kinds of oxygen carrier particles (NiO/bentonite, $NiO/LaAl_{11}O_{18}$, $Co_xO_y/CoAl_2O_4$, $NiO/NiAl_2O_4$) were tested with the simulated syngas (30% $H_2$, 10% $CO_2$, 60% CO) as a reduction gas. With each of these particles, the maximum conversion and oxygen transfer capacity increase with increasing the reduction temperature At the given experimental range, the optimum operating temperature to maximize oxygen transfer rate is found to be $900^{\circ}C$ and carbon deposition on the particles could avoid at the temperature above $800^{\circ}C$. Among four kinds of oxygen carrier particles, the NiO-based particles exhibits better reactivity than the CoO-based particle. Moreover, the NiO/bentonite particle produces the best reactivity based on the oxygen transfer rate and the degree of carbon deposition. The measured oxygen transfer rate increases as the metal oxide content in NiO/bentonite particle is increased thereby higher metal oxide contents could provide stable operation of chemical-looping combustor.

Investigation of helium injection cooling to liquid oxygen chamber (헬륨분사를 통한 액체산소 냉각의 이론적 고찰 및 해석과 시험의 비교)

  • Gwon, O-Seong;Jo, Nam-Gyeong;Jeong, Yong-Gap;Lee, Jung-Yeop
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.134-142
    • /
    • 2006
  • Sub-cooling of cryogenic propellant by helium injection is one of the most effective methods for suppressing bulk boiling and keeping sub-cooled liquid oxygen before rocket launch. In order to design the cooling system, understanding of the limitations of heat and mass transfer is required. In this paper, an analytical model for the helium injection system is presented. This model's main feature is the representation of bubbling system using finite-rate heat transfer and instantaneous mass transfer concept. With this simplified approach, the effect of helium injection to liquid oxygen system under several circumstances is examined. Experimental results along with simulations of single bubble rising in liquid oxygen and bubbling system are presented with various helium injection flow rates, and with change of oxygen chamber pressure.

  • PDF

Continuous Xanthan Fermentations in a Three-Phase Fluidized Bed Bioreactor (삼상유동층 생물반응기에서의 연속식 Xanthan 발효)

  • 서일순;노희찬;허충회
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • The aerobic bacterium Xanthomonas campestris was cultivated continuously in a three-phase fluidized bed bioreactor to produce extracellular polysaccharide xanthan, Fluidized particles of 8.0 mm glass beads were used for disintegrating the large air bubbles even at high viscosities to improve the gas-liquid oxygen transfer rate. Xanthin productivity [kg xanthan/kg cell dry mass·h] and molecular weight increased, with dilution rate in the continuous xanthan fermentations. The specific xanthan productivities were not limited by the oxygen transfer rate and were much higher in the continuous cultivations than those predicted by the results of the batch xanthan fermentations.

Respiration Rates of Individual Bovine In Vivo-Produced Embryos Measured with a Novel, Scanning Electrochemical Microscopy (Scanning Electrochemical Microscopy를 이용한 한우 체내 수정란의 호흡률 조사)

  • Kim, Hyun;Bok, Nan-Hee;Kim, Sung-Woo;Do, Yoon-Jung;Kim, Min-Kyu;Cho, Sang-Rae;Seong, Hwan-Hoo;Kim, Dong Hun;Ko, Yeoung-Gyu
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.91-99
    • /
    • 2014
  • Oxygen consumption is a useful parameter for evaluating mammalian embryo quality, since individual bovine embryos was noninvasively quantified by scanning electrochemical microscopy (SECM). Recently, several approaches have been used to measure the oxygen consumption rates of individual embryos, but relationship between oxygen consumption and pregnancy rates of Hanwoo following embryo transfer has not yet been reported. In this study, we measured to investigate the correlation between oxygen consumption rate and pregnancy rates of Hanwoo embryo using a SECM. In addition to, the expression of pluripotent gene and anti-oxidant enzyme was determined using real-time PCR by extracting RNA according to the oxygen consumption of in vivo embryo. First, we found that the oxygen consumption significantly increased in blastocyst-stage embryos (blastocyst) compared to early blastocyst stage embryos, indicating that oxygen consumption reflects the embryo quality (Grade I). Oxygen consumption of blastocyst was measured using a SECM and total cell number of in vitro blastocyst was enumerated by counting cells stained by propidium iodide. The oxygen consumption or GI blastocysts were significantly higher than those of GII blastocysts ($10.2{\times}10^{15}/mols^{-1}$ versus $6.4{\times}10^{15}/mols^{-1}$, p<0.05). Total cell numbers of in vitro blastocysts were 74.8, 90.7 and 110.2 in the oxygen consumption of below 10.0, 10.0~12.0 and over $12.0{\sim}10^{15}/mols^{-1}$, respectively. Pregnant rate in recipient cow was 0, 60 and 80% in the transplantation of embryo with the oxygen consumption of below 10.0, 10.0~12.0 and over $12.0{\times}10^{15}/mols^{-1}$, respectively. GPX1 and SOD1 were significantly increased in over -10.0 group than below 10.0 groups but in catalase gene, there was no significant difference. On the other hand, In OCT-4 and Sox2, pluripotent gene, there was a significant difference (p<0.05) between the below-10.0 ($0.98{\pm}0.1$) and over 10.0 ($1.79{\pm}0.2$). In conclusion, these results suggest that measurement of oxygen consumption maybe help increase the pregnant rate of Hanwoo embryos.

Application of Scale-Up Criterion of Constant Oxygen Mass Transfer Coefficient ($k_La$) for Production of Itaconic Acid in a 50 L Pilot-Scale Fermentor by Fungal Cells of Aspergillus terreus

  • Shin, Woo-Shik;Lee, Dohoon;Kim, Sangyong;Jeong, Yong-Seob;Chun, Gie-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1445-1453
    • /
    • 2013
  • The scale-up criterion of constant oxygen mass transfer coefficient ($k_La$) was applied for the production of itaconic acid (IA) in a 50 L pilot-scale fermentor by the fungal cells of Aspergillus terreus. Various operating conditions were examined to collect as many $k_La$ data as possible by adjusting the stirring speed and aeration rate in both 5 L and 50 L fermentor systems. In the fermentations performed with the 5 L fermentor, the highest IA production was obtained under the operating conditions of 200 rpm and 1.5 vvm. Accordingly, we intended to find out parallel agitation and aeration rates in the 50 L fermentor system, under which the $k_La$ value measured was almost identical to that ($0.02sec^{-1}$) of the 5 L system. The conditions of 180 rpm and 0.5 vvm in the 50 L system turned out to be optimal for providing almost the same volumetric amount of dissolved oxygen (DO) into the fermentor, without causing shear damage to the producing cells due to excessive agitation. Practically identical fermentation physiologies were observed in both fermentations performed under those respective operating conditions, as demonstrated by nearly the same values of volumetric ($Q_p$) and specific ($q_p$) IA production rates, IA production yield ($Y_{p/s}$), and specific growth rate (${\mu}$). Specifically, the negligible difference of the specific growth rate (${\mu}$) between the two cultures (i.e., $0.029h^{-1}$ vs. $0.031h^{-1}$) was notable, considering the fact that ${\mu}$ normally has a significant influence on $q_p$ in the biosynthesis of secondary metabolites such as itaconic acid.

Effects of Oxygen Transfer Rate of a Polystyrene Foam Bead Media in a Packed Column Aerator (Packed Column 에어레이터에서 매질로 이용한 발포스티로폼 입자의 산소 전달 효과)

  • 박정환;김유희;조재윤
    • Journal of Aquaculture
    • /
    • v.13 no.3
    • /
    • pp.267-275
    • /
    • 2000
  • To evaluate the characteristics and efficiency of oxygen transfer rate of a polystyrene foam bead as media in a packed column aerator was tested. This media has more surface area and cheaper than other ordinary plastic media. The polystyrene foam media was a sphere-shaped bead with 2.5 mm in diameter and specific surface area was 1,350 $m^2$/$m^3$. Oxygen transfer rate and standard aeration efficiency were tested under different hydraulic loading rates, depths of the media and temperatures. Experiment 1 was performed using a small packed column aerator with 10 cm in diameter and 1 m in length. The aerator filled with 0, 4.5, 9.0 and 18.0 cm of the media was tested under hydraulic loading rates of 2.0, 4.0 and 5.6 $m^3$/$m^2$/min at temperatures of 20, 25 and 3$0^{\circ}C$, respectively. In this experiment, standard oxygen transfer rate (SOTR) increased with the hydraulic loading rate and depth of the media increased. The maximum SOTR was reached at 5.6 $m^3$/$m^2$/min of hydraulic loading rate with 9 cm in depth of the media. However, standard aeration efficiency (SAE) decreased with the hydraulic loading rate increased because electricity consumed by pump increased as hydraulic loading rate increased. The highest SAE was reached at hydraulic loading rate of 2.0 $m^3$/$m^2$/min with 9.0 cm in depth of the media. Therefore, the highest SOTR and SAE were achieved at 9.0 cm in depth of the media regardless of the hydraulic loading rate. The maximum SAE was about 1.8 kg $O_2$/kW-hr with the hydraulic loading .ate of $m^3$/$m^2$/min at temperature of 20 $^{\circ}C$.Experiment 2 was performed using a larger aerator, 20 cm in diameter with 2 m in height. The aerator filled with 0, 9, 18, 27 and 36 cm of the media was operated under hydraulic loading rate of 2.0, 4.0 and 5.6 $m^3$/$m^2$/min at temperature of 27 $^{\circ}C$. The SAE reached to the highest efficiency (1.9 kg $O_2$/kW-hr) at 2.0 $m^3$/$m^2$/min of hydraulic loading rate and 36 cm in depth of the media. According to the above results, the polystyrene foam bead as a media in a packed column aerator was effective to increase oxygen transfer rate.

  • PDF

Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic

  • Feng, Wenpei;Zhang, Xue;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.908-917
    • /
    • 2020
  • Corrosion of structural materials presents a critical challenge in the use of lead-bismuth eutectic (LBE) as a nuclear coolant in an accelerator-driven system. By forming a protective layer on the steel surfaces, corrosion of steels in LBE cooled reactors can be mitigated. The amount of oxygen concentration required to create a continuous and stable oxide layer on steel surfaces is related to the oxidation process. So far, there is no oxidation experiment in fuel assemblies (FA), let alone specific oxidation detail information. This information can be, however, obtained by numerical simulation. In the present study, a new coupling method is developed to implement a coupling between the oxygen mass transfer model and the commercial computational fluid dynamics (CFD) software ANSYS-CFX. The coupling approach is verified. Using the coupling tool, we study the oxidation process of the FA and investigate the effects of different inlet parameters, such as temperature, flow rate on the mass transfer process.

Enhancement of Oxygen Transfer Efficiency Using Vibrating lung Assist Device in In-Vitro Fluid Flow (In-vitro 유동장에서 진동형 폐 보조장치를 이용한 산소전달 효율의 향상)

  • 권대규;김기범;이삼철;정경락;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1332-1335
    • /
    • 2003
  • This paper presents the enhancement of oxygen transfer efficiency using the vibrating intravascular lung assist device (VIVLAD) in in-vitro experiments for patients having chronic respiratory problems. The test section was a cylinder duct with the inner diameter of 30 mm. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-vibrator, a function generator. and a power amplifier. The direction of vibration was radial to the fluid flow. Gas flow rates of up to 6 l/min through the 120-cm-Jong hollow fibers have been achieved by exciting a piezo-vibrator. The output of PVDF sensor were investigated by various frequencies in VIVLAD. The experimental results showed that VIVLAD would be enhance oxygen transfer efficiency.

  • PDF

A Study on the Organic Waterwater Treatment Using of Agitating Mixer Biofilm Reactor (Agitating mixer를 이용한 생물막공법에서 유기성 폐수처리에 관한 연구)

  • Lee, Sang-Soo;Kim, Sung-Sun;Tak, Sung-Je;Jung, Kun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.107-115
    • /
    • 1999
  • The general objectives of this study are to develop a new biofilm reactor equipped with agitating mixer and to evaluated the treatment efficiency of the reactor. The experimental tests were conducted to estimate the oxygen transfer rate of agitating mixer system. Results are as follows. 1. The oxygen transfer coefficient, KLa, was $8.94hr{-1}$ and $7.50hr{-1}$ at 500rpm and 250rpm of agitating mixer speed, respectively. When the agitating mixer was used in the biofilm reactor, 22.5% and 18.8% of oxygen transfer rates were increased at 500rpm and 250rpm, respectively. 2. The removal rate of BOD and CODcr was decreased by 5.0% when the agitating mixer speed was varied from low (250rpm) to high level (500rpm). 3. The concentration of attached biomass had a difference of 5.0% to 7.3%, whereas that of suspended biomass had a difference of about 15.0%, depending upon variation of the agitating mixer speed.

  • PDF

A Study on the Characteristics of Mass Transfer in Hollow Fiber Membranes (중공사막에서의 물질전달 특성에 관한 연구)

  • 김기범;김종석;김종수;유일수;이왕로;김성종
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • This paper presents the enhancement of oxygen transfer efficiency using vibrating intravascular lung assist device (VIVLAD) for patients having chronic respiratory problems. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-actuator, a function generator, and a power amplifier. Gas flow rates of up to 6 L/min through the 120-cm-long hollow fibers have been achieved by exciting a piezo-actuator. The output PVDF sensor and FRF (frequency response function) were investigated by various frequency in VIVLAD. As a result, the maximum oxygen transfer rate was found to occur with maximum amplitude and the transfer of vibration to the hollow fiber membranes. It was excited by the frequency band of 35 Hz at various distilled water flow rates, and various module types.