• Title/Summary/Keyword: oxygen stress

Search Result 1,549, Processing Time 0.034 seconds

Neuroprotective effect of Coreopsis lanceolata extract against hydrogen-peroxide-induced oxidative stress in PC12 cells

  • Kyung Hye Seo;Hyung Don Kim;Jeong-Yong Park;Dong Hwi Kim;Seung-Eun Lee;Gwi Young Jang;Yun-Jeong Ji;Ji Yeon Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.175-184
    • /
    • 2022
  • The present study investigated the neuroprotective effects of Coreopsis lanceolate extract against hydrogen-peroxide (H2O2)-induced oxidative damage and cell death in pheochromocytoma 12 (PC12) cells. Reactive oxygen species (ROS), 2,2'-azinobis (3-ethylbebzothiazoloine-6-sulfonic acid) diammonium salt, and 1,1-diphenyl-2-picrrylhydrazyl radical scavenging activities, as well as the expression levels of proteins associated with oxidative damage and cell death were investigated. According to the results, C. lanceolate extract exhibited inhibitory activity against intracellular ROS generation and cell-damaging effects induced by hydroxyl radicals in a dose-dependent manner. Total phenolic and flavonoid contents were 22.3 mg·g-1 gallic acid equivalent and 16.2 mg·g-1 catechin equivalent, respectively. Additionally, a high-performance liquid chromatography (HPLC) assay based on the internal standard method used to detect phenolic compounds. The phenolic compounds identified in C. lanceolata extract contained (+)-catechin hydrate (5.0 ± 0.0 mg·g-1), ferulic acid (1.6 ± 0.0 mg·g-1), chlorogenic acid (1.5 ± 0.0 mg·g-1), caffeic acid (1.2 ± 0.0 mg·g-1), naringin (0.9 ± 0.0 mg·g-1), and p-coumaric acid (0.5 ± 0.0 mg·g-1). C. lanceolata extract attenuated pro-apoptotic Bax expression levels and enhanced the expression levels of anti-apoptotic Bcl-2, caspase-3, and caspase-9 proteins. Therefore, C. lanceolata is a potential source of materials with neuroprotective properties against neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases.

Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells (RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

Neuroprotective effects of hesperetin on H2O2-induced damage in neuroblastoma SH-SY5Y cells

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.899-916
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is a fundamental neurodegenerative disease trigger that damages and decimates nerve cells. Neurodegenerative diseases are chronic central nervous system disorders that progress and result from neuronal degradation and loss. Recent studies have extensively focused on neurodegenerative disease treatment and prevention using dietary compounds. Heseperetin is an aglycone hesperidin form with various physiological activities, such as anti-inflammation, antioxidant, and antitumor. However, few studies have considered hesperetin's neuroprotective effects and mechanisms; thus, our study investigated this in hydrogen peroxide (H2O2)-treated SH-SY5Y cells. MATERIALS/METHODS: SH-SY5Y cells were treated with H2O2 (400 µM) in hesperetin absence or presence (10-40 µM) for 24 h. Three-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability, and 4',6-diamidino-2-phenylindole staining allowed us to observe nuclear morphology changes such as chromatin condensation and apoptotic nuclei. Reactive oxygen species (ROS) detection assays measured intracellular ROS production; Griess reaction assays assessed nitric oxide (NO) production. Western blotting and quantitative polymerase chain reactions quantified corresponding mRNA and proteins. RESULTS: Subsequent experiments utilized various non-toxic hesperetin concentrations, establishing that hesperetin notably decreased intracellular ROS and NO production in H2O2-treated SH-SY5Y cells (P < 0.05). Furthermore, hesperetin inhibited H2O2-induced inflammation-related gene expression, including interluekin-6, tumor necrosis factor-α, and nuclear factor kappa B (NF-κB) p65 activation. In addition, hesperetin inhibited NF-κB translocation into H2O2-treated SH-SY5Y cell nuclei and suppressed mitogen-activated protein kinase protein expression, an essential apoptotic cell death regulator. Various apoptosis hallmarks, including shrinkage and nuclear condensation in H2O2-treated cells, were suppressed dose-dependently. Additionally, hesperetin treatment down-regulated Bax/Bcl-2 expression ratios and activated AMP-activated protein kinase-mammalian target of rapamycin autophagy pathways. CONCLUSION: These results substantiate that hesperetin activates autophagy and inhibits apoptosis and inflammation. Hesperetin is a potentially potent dietary agent that reduces neurodegenerative disease onset, progression, and prevention.

Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과)

  • Chung-Mu Park;Hyun An;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.

Ferulic Acid Protects INS-1 Pancreatic β Cells Against High Glucose-Induced Apoptosi (INS-1 췌장 베타 세포에서 ferulic acid의 당독성 개선 효과)

  • Jae Eun Park;Ji Sook Han
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • Diabetes mellitus (DM) is one of the main global health problems. Chronic exposure to hyperglycemia can lead to cellular dysfunction that may become irreversible over time, a process that is termed glucose toxicity. Our perspective about glucose toxicity as it pertains to the pancreatic β-cell is that the characteristic decreases in insulin secretion are caused by regulated apoptotic gene expression. In this study, we examined whether ferulic acid protects INS-1 pancreatic cells against high glucose-induced apoptosis. High glucose concentration (30 mM) induced glucotoxicity and death of INS-1 pancreatic β cells. However, treatment with 1, 5, 10, or 20 μM ferulic acid increased the cell viability in a concentration-dependent manner. Treatment with ferulic acid dose-dependently decreased the intracellular levels of reactive oxygen species, thiobarbituric acid reactive substances, and nitric oxide in INS-1 pancreatic β cells pretreated with high glucose. These effects influence the apoptotic pathway, increasing the expression of the anti-apoptotic protein Bcl-2 and reducing the levels of pro-apoptotic proteins, including Bax, cytochrome C, and caspase 9. Annexin V/propidium iodide staining indicated that ferulic acid significantly reduced high glucose-induced apoptosis. These results demonstrate that ferulic acid is a potential therapeutic agent to protect INS-1 pancreatic β cells against high glucose-induced apoptosis.

Rutin alleviated lipopolysaccharide-induced damage in goat rumen epithelial cells

  • Jinshun Zhan;Zhiyong Gu;Haibo Wang;Yuhang Liu;Yanping Wu;Junhong Huo
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.303-314
    • /
    • 2024
  • Objective: Rutin, also called vitamin P, is a flavonoids from plants. Previous studies have indicated that rutin can alleviate the injury of tissues and cells by inhibiting oxidative stress and ameliorating inflammation. There is no report on the protective effects of rutin on goat rumen epithelial cells (GRECs) at present. Hence, we investigated whether rutin can alleviate lipopolysaccharide (LPS)-induced damage in GRECs. Methods: GRECs were cultured in basal medium or basal medium containing 1 ㎍/mL LPS, or 1 ㎍/mL LPS and 20 ㎍/mL rutin. Six replicates were performed for each group. After 3-h culture, the GRECs were harvested to detect the relevant parameters. Results: Rutin significantly enhanced the cell activity (p<0.05) and transepithelial electrical resistance (TEER) (p<0.01) and significantly reduced the apoptosis rate (p<0.05) of LPS-induced GRECs. Rutin significantly increased superoxide dismutase, glutathione peroxidase, and catalase activity (p<0.01) and significantly decreased lactate dehydrogenase activity and reactive oxygen species and malondialdehyde (MDA) levels in LPS-induced GRECs (p<0.01). The mRNA and protein levels of interleukin 6 (IL-6), IL-1β, and C-X-C motif chemokine ligand 8 (CXCL8) and the mRNA level of tumor necrosis factor-α (TNF-α) and chemokine C-C motif ligand 5 (CCL5) were significantly increased in LPS-induced GRECs (p<0.05 or p<0.01), while rutin supplementation significantly decreased the mRNA and protein levels of IL-6, TNF-α, and CXCL8 in LPS-induced GRECs (p<0.05 or p<0.01). The mRNA level of toll-like receptor 2 (TLR2), and the mRNA and protein levels of TLR4 and nuclear factor κB (NF-κB) was significantly improved in LPS-induced GRECs (p<0.05 or p<0.01), whereas rutin supplementation could significantly reduce the mRNA and protein levels of TLR4 (p<0.05 or p<0.01). In addition, rutin had a tendency of decreasing the protein levels of CXCL6, NF-κB, and inhibitor of nuclear factor kappa-B alpha (0.05

Fabrication and Characterization of Lactate Oxidase-catalase-mitochondria Electrode (젖산 산화효소-카탈라아제-미토콘드리아 전극 제작 및 특성 분석)

  • Ke Shi;Keerthi Booshan Manikandan;Young-Bong Choi;Chang-Joon Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.238-245
    • /
    • 2024
  • The lactate electrode can be utilized either as an electrode for lactate sensor to monitor the patient's health status, stress level, and athlete's fatigue in real time or lactate fuel cell. In this study, we fabricated a high-performance electrode composed of lactate oxidase, catalase, and mitochondria, and investigated the surface analysis and electrochemical properties of this electrode. Carbon paper modified with single-walled carbon nanotubes (CP-SWCNT) had significantly improved electrical conductivity compared to before modification. The electrode to which lactate oxidase, catalase, and mitochondria were attached (CP-SWCNT-LOx-Cat-Mito) produced a higher current than the electrode to which lactate oxidase and catalase were attached. The amount of reduction current produced by the bilirubin oxidase (BOD)-attached electrode (CP-SWCNT-BOD) was greatly affected by the presence or absence of oxygen in the electrolyte. The fuel cell composed of CP-SWCNT-LOx-Cat-Mito (anode) and CP-SWCNT-BOD (cathode) produced maximum power (29 ㎼/cm2) at a discharge current density of 133 ㎂/cm2. From this study, we had proved that mitochondria is essential for improving lactate sensor and fuel cell performance.

Diesel Exhaust Particles Impair Therapeutic Effect of Human Wharton's Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis through ROS/ERK/cFos Signaling Pathway

  • Hyun Sung Park;Mi-Kyung Oh;Joong Won Lee;Dong-Hoon Chae;Hansol Joo;Ji Yeon Kang;Hye Bin An;Aaron Yu;Jae Han Park;Hee Min Yoo;Hyun Jun Jung;Uimook Choi;Ji-Won Jung;In-Sook Kim;Il-Hoan Oh;Kyung-Rok Yu
    • International Journal of Stem Cells
    • /
    • v.15 no.2
    • /
    • pp.203-216
    • /
    • 2022
  • Background and Objectives: Epidemiological investigations have shown positive correlations between increased diesel exhaust particles (DEP) in ambient air and adverse health outcomes. DEP are the major constituent of particulate atmospheric pollution and have been shown to induce proinflammatory responses both in the lung and systemically. Here, we report the effects of DEP exposure on the properties of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs), including stemness, regeneration, and immunomodulation. Methods and Results: Non-apoptotic concentrations of DEP (10 ㎍/ml) inhibited the migration and osteogenic differentiation capacity of WJ-MSCs. Gene expression profiling showed that DEP increased intracellular reactive oxygen species (ROS) and expression of pro-inflammatory and metabolic-process-related genes including cFos. Furthermore, WJ-MSCs cultured with DEP showed impaired suppression of T cell proliferation that was reversed by inhibition of ROS or knockdown of cFos. ERK inhibition assay revealed that DEP-induced ROS regulated cFos through activation of ERK but not NF-κB signaling. Overall, low concentrations of DEP (10 ㎍/ml) significantly suppressed the stemness and immunomodulatory properties of WJ-MSCs through ROS/ERK/cFos signaling pathways. Furthermore, WJ-MSCs cultured with DEP impaired the therapeutic effect of WJ-MSCs in experimental colitis mice, but was partly reversed by inhibition of ROS. Conclusions: Taken together, these results indicate that exposure to DEP enhances the expression of pro-inflammatory cytokines and immune responses through a mechanism involving the ROS/ERK/cFos pathway in WJ-MSCs, and that DEP-induced ROS damage impairs the therapeutic effect of WJ-MSCs in colitis. Our results suggest that modulation of ROS/ERK/cFos signaling pathways in WJ-MSCs might be a novel therapeutic strategy for DEP-induced diseases.

Antioxidant and anti-gastritis effects of a mixture of Ipomoea batatas extract and Dioscorea japonica extract on an animal model by HCl/ethanol-induced gastritis (고구마와 참마 추출 혼합물의 항산화 활성 및 HCl/ethanol 투여로 유도된 위염 동물모델에서 위염 억제 효과)

  • Yun-seong Lee;Eun-Gyung Mun;Eun Ah Sim;Bo-Young Lee
    • Journal of Nutrition and Health
    • /
    • v.57 no.4
    • /
    • pp.389-402
    • /
    • 2024
  • Propose: This study examined the antioxidant and anti-gastritis properties of a mixture comprising Ipomoea batatas (IB) extract and Dioscorea japonica (DJ) extract. Methods: The mixture of IB and DJ extracts was analyzed for its total flavonoid content (TFC), total polyphenol content (TPC), and radical scavenging activities. Gastric lesions were induced by treating rats with 1 mL of a solution containing 60% ethanol and 150 mM HCl. The rats were then divided into 5 groups: CON (normal control), HEC (treated with 150 mM HCl-60% ethanol and distilled water), IBE (treated with 150 mM HCl-60% ethanol and IB extract at 350 mg/kg body weight [BW]), ID30 (treated with 150 mM HCl-60% ethanol and a mixture of IB and DJ extracts in a 7:3 ratio at 350 mg/kg BW), and DJE (treated with 150 mM HCl-60% ethanol and DJ extract at 350 mg/kg BW). Results: The ID30 group exhibited significantly higher TFC, TPC, and radical scavenging activities than the groups treated with single extracts. This group also showed a notable decrease in the formation of gastric lesions and preservation of gastric wall mucus. In addition, the serum levels of the inflammatory marker tumor necrosis factor (TNF)-α were significantly lower in the ID30 group than in the HEC group. Conclusion: The antioxidants present in the ID30 mixture effectively reduced oxidative stress and reactive oxygen species, mitigating gastric mucosal irritation induced by alcohol and acid. Furthermore, the mixture inhibited gastric acid secretion and inflammatory marker expression, such as TNF-α, preventing tissue damage. These findings suggest that the ID30 mixture is a potential preventative treatment for gastritis.

Antioxidant Activities and Hepato-protective Effects of Stauntonia hexaphylla Fruit Extract Against H2O2-induced Oxidative Stress and Acetaminophen-induced Toxicity (멀꿀 열매 추출물의 항산화 활성 및 H2O2로 유도된 산화적 스트레스와 아세트아미노펜 독성 모델에서의 간 보호효과)

  • Lee, Gyuok;Kim, Jaeyong;Kang, Huwan;Bae, Donghyuck;Choi, Chul-yung
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.708-717
    • /
    • 2018
  • The antioxidant activity and protective effects of a hot water extract from the Stauntonia hexaphylla fruit (WESHF) were investigated in vitro and in vivo. The total polyphenol and flavonoid contents of WESHF were $16.13{\pm}0.27mg$ gallic acid equivalent/g and $4.7{\pm}0.80mg$ catechin equivalent/g, respectively. In addition, the DPPH radical-scavenging activity ($SC_{50}$) and the Oxygen Radical Absorbance capacity of WESHF were $63.62{\pm}4.10{\mu}g/ml$ and $90.63{\pm}5.29{\mu}M$ trolox equivalent/g, respectively. The hepatoprotective effect of WESHF against hydrogen peroxide-induced oxidative damage was investigated. $H_2O_2$-induced liver damage on HepG2 cells was prevented by $200{\mu}g/ml$ of WESHF. Furthermore, to investigate the protection mechanism of WESHF on hydrogen peroxide-induced cytotoxicity in HepG2 cells, pre-treatment with $200{\mu}g/ml$ of WESHF significantly attenuated a decrease in the activities of CAT, SOD, GR, and GPx. The hepatoprotective activity of WESHF was evaluated in an experimental model of hepatic damage induced by acetaminophen (APAP). The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly decreased in the livers of mice treated with 200 mg/kg of WESHF compared to the APAP-treated group. The lipid peroxidation level, which increased after APAP administration, was significantly reduced in the WESHF group. In addition, histological examinations of the liver showed the same protective effect of WESHF treatment. Based on these findings, it is suggested that WESHF has potent hepatoprotective effects, and the mechanism that causes this type of protection could be related to antioxidant pathways.