• Title/Summary/Keyword: oxygen separation

Search Result 208, Processing Time 0.021 seconds

Overall Performance characteristic for 300MW Taean IGCC Plant (300MW 태안 IGCC 플랜트 종합성능 특성)

  • Kim, Hakyong;Kim, Jaehwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • As a part of the government renewable energy policy, KOWEPO is constructing 300MW IGCC plant in Taean. IGCC plant consists of gasification block, air separation unit and power block, which performance test is separately conducted. Overall performance test for IGCC plant is peformed to comply with ASME PTC 46. Major factors affected on the overall efficiency for IGCC plant are external conditions, each block performance(gasification, ASU, power block), water/steam integration and air integration. Performance parameters of IGCC plant are cold gas efficiency, oxygen consumption, sensible heat recovery of syngas cooler for gasification block and purity of oxygen, flow amount of oxygen and nitrogen, power consumption for air separation unit and steam/water integration among the each block. The gas turbine capacity applied to the IGCC plant is 20 percent higher than NGCC gas turbine due to the low caloric heating value of syngas, therefor it is possible to utilize air integration between gas turbine and air separation unit to improve overall efficiency of the IGCC plant and there is a little impact on the ambient condition. It is very important to optimize the air integration design with consideration to the optimized integration ratio and the reliable operation. Optimized steam/water integration between power block and gasification block can improve overall efficiency of IGCC plant where the optimized heat recovery from gasification block should be considered. Finally, It is possibile to achieve the target efficiency above 42 percent(HHV, Net) for 300MW Taean IGCC plant by optimized design and integration.

  • PDF

STATUS OF MEMBRANE TECHNOLOGY IN KOREA

  • Im, Hoagy-K;Won, Jang-mook
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.3-7
    • /
    • 1999
  • Government efforts on membrane technology started in early 1980 with Membrane Development Program supported by the Ministry of Science and Technology. Several independent research projects on liquid separation, gas separation, hollow fiber producing program etc. were carried out during the 1980s. The RaCER was commissioned by MOCI for the general management of the project which had its aims in establishing the base for developing membranes, modules and systems for liquid separation in August 1993. More recently, in June 1995, a program for developing membranes for oxygen separation, nitrogen separation and hydrogen separation was initiated. This paper outlines the brief history of membrane technology development in Korea from the introduction of membrane filtration technology during the late 1960s to present.

  • PDF

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

Enrichment of Oxygen and process engineering aspects using polysulfone hollowfiber membrane (폴리수폰 중공사막에 의한 산소농축 및 공정변수의 영향)

  • 조정식;김종수;이광래
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.65-66
    • /
    • 1997
  • 1. 서론 : 현재의 막분리 기술로는 단 단계 분리공정(single-stage separation)으로 약 40%의 산소농축공기(oxygen-enriched air)를 얻을 수 밖에 없지만 심냉법(cryogenic techniques)보다는 에너지 소비율이 적으며, 공정이 비교적 간단하기 때문에 용도에 따라 순 산소를 꼭 필요로 하지 않는 제철소, 발전소 등의 연소분야, 호흡기 환자를 위한 의료분야, 생물공학이나 항공기 분야 등에 편리하게 이용될 수 있다. 이와 같이 용도가 다양한 산소를 분리막을 이용하여 보다 편리하고 값싸게 얻기 위해서는 산소와 질소의 막투과에 대한 새로운 지식을 얻고 막투과가 기체의 어떤 성질에 지배되고 있는가를 조사할 필요가 있다. 본 연구에서는 고무상 고분자막(rubbery polymer membrane)에 대한 산소/질소의 수착특성과 순수한 기체의 투과율(permeation rate)을 기초로 하여 혼합기체의 투과율, 분리인자(separation factor), 막분리 공정변수에 의한 중공사 분리막에서의 기체분리특성에 대하여 연구하였다.

  • PDF

Analysis of Solid Oxide Fuel Cell/Oxy-fuel Combustion Power Generation System Using Oxygen Separation Technology (산소분리기술을 사용한 연료전지/순산소연소 발전시스템 해석)

  • Park, Sung-Ku;Kim, Tong-Seop;Sohn, Jeong-Lak;Lee, Young-Duk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-54
    • /
    • 2008
  • This study aims to devise and analyze a power generation system combining the solid oxide fuel cell and oxy-fuel combustion technology. The fuel cell operates at an elevated pressure, a constituting a SOFC/gas turbine hybrid system. Oxygen is extracted from the high pressure cathode exit gas using ion transport membrane technology and supplied to the oxy-fuel power system. The entire system generates much more power than the fuel cell only system due to increased fuel cell voltage and power addition from oxy-fuel system. More than one third of the power comes out of the oxy-fuel system. The system efficiency is also higher than that of the fuel cell only system. Recovering most of the generated carbon dioxide is major advantage of the system.

  • PDF

Removal of Waste Generated by Flounder (Paralichthys olivaceus) in Aquarium using a Foam Separator (활어수조에서 넙치 사육시 포말분리장치를 이용한 오염물 제거)

  • SHIN Jeong-Sik;LEE Chang-Kuen;JEONG Ho-Su;LEE Min-Su;LEE Jin-Kyung;SUH Keun-Hack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.6
    • /
    • pp.498-504
    • /
    • 2004
  • Removal of waste generated by Paralichthys olivaceus in the seawater aquarium using a foam separator was investigated. Protein concentration without a foam separator continuously increased until 3 days after stocking and reached at 25 mg/L after 5 days stocking, but protein concentration became lower than the initial protein concentration (2.5 mg/L) with a foam separator. The trends of other fish wastes such as ammonia, total suspended solids (TSS) and chemical oxygen demand (COD) were similar to protein. Dissolved oxygen (DO) in the aquarium decreased below 6.0 mg/L without a foam separator, but with a foam separator the average DO in the aquarium was 7.3 mg/L. Foam separation with the increase of superficial air velocity (SAV) was more effective than that with the fixed SAV. This study showed that wastewater. treatment of seawater aquarium using a foam separator is effective method for a fish waste removal and oxygen supply.

Fabrication of a MnCo2O4/gadolinia-doped Ceria (GDC) Dual-phase Composite Membrane for Oxygen Separation

  • Yi, Eun-Jeong;Yoon, Mi-Young;Moon, Ji-Woong;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • A dual-phase ceramic membrane consisting of gadolinium-doped ceria (GDC) as an oxygen ion conducting phase and $MnCo_2O_4$ as an electron conducting phase was fabricated by sintering a GDC and $MnCo_2O_4$ powder mixture. The $MnCo_2O_4$ was found to maintain its spinel structure at temperatures lower than $1200^{\circ}C$. (Mn,Co)(Mn,Co)$O_4$ spinel, manganese and cobalt oxides formed in the sample sintered at $1300^{\circ}C$ in an air atmosphere. XRD analysis revealed that no reaction phases occurred between GDC and $MnCo_2O_4$ at $1200^{\circ}C$. The electrical conductivity did not exhibit a linear relationship with the $MnCo_2O_4$ content in the composite membranes, in accordance with percolation theory. It increased when more than 15 vol% of $MnCo_2O_4$ was added. The oxygen permeation fluxes of the composite membranes increased with increasing $MnCo_2O_4$ content and this can be explained by the increase in electrical conductivity. However, the oxygen permeation flux of the composite membranes appeared to be governed not only by electrical conductivity, but also by the microstructure, such as the grain size of the GDC matrix.

막분리법을 이용한 산소부화공기의 제조와 연소장치에의 응용

  • 박준택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.38-41
    • /
    • 1994
  • 막분리(membrane separation)법은 막 전후의 압력차, 농도차 등을 추진력(driving foroe)으로 하여 분리대상물질에 대한 막의 선택투과성 차이를 이용, 분리를 행하는 것이다. 이 분리법은 기존의 분리공정인 심냉법(cryogenic separation)과는 달리 상변환 공정이 필요없어 에너지가 적게 들고 또한 PSA(pressure swing adsorption)법에서와 같은 cycle 운전이 필요없어 연속적으로 분리가 가능하며 시스템도 간단하다. 최근 기체 막분리의 경우 수소 및 탄산가스의 회수정제, 공기중의 산소와 질소의 분리 등에 실용화되고 있다. 여기서는 공기중의 산소를 분리하여 30-40% 산소부화공기(oxygen enriched air)를 간편하게 제조할 수 있는 산소부화막장치와 연소장치에의 응용기술 및 연구결과에 대해 간략히 소개하고자 한다.

  • PDF

A study on the development of oxygen measurement device for diagnosis of peripheral vascular disease in lower extremity (하지 (下脂) 조직내의 말초 혈관계 질환 진단을 위한 산소 측정장치의 개발에 관한 연구)

  • 임현수;이준규;박동철
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 1999
  • The oxygen saturation of blood can be measured by the difference absorption in optical spectra of Hb and Hb0$_2$, as the well known previous study. In this study we developed the non-invasive oxygen measurement device for diagnosis of peripheral vascular disease in lower extremity using infrared and red LED which produce a peak spectral emission at a wavelength of 660 nm, and 940 nm. To evaluate the clinical application of the oxygen measurement device, we performed lower extremity study to measure the oxygen changes in response to physiological changes within biological tissue. The results showed that oxygen saturation of blood in biological tissue can be monitored from the separation arrangement light source and detector.

  • PDF

Gas Separation Membranes Containing $Re_6Se_8(MeCN)_6^{2+}$ Cluster-Supported Cobalt-Porphyrin Complexes

  • Park Su Mi;Won Jongok;Lee Myung-Jin;Kang Yong Soo;Kim Se-Hye;Kim Youngmee;Kim Sung-Jin
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.598-603
    • /
    • 2004
  • Cellulose nitrate (CN) composite membranes, containing cobalt porphyrin (CoP) complexes self-assembled within nanometer-sized rhenium clusters (ReCoP), have been prepared and their oxygen and nitrogen gas perme­abilities were analyzed. The solubility of ReCoP and the characteristics of the corresponding composite membranes were analyzed using a Cahn microbalance, FT-IR spectroscopy, wide-angle X-ray scattering, and differential scanning calorimetry. The nitrogen permeability through the CN composite membranes decreased upon addition of ReCoP and CoP, which implies that the presence of these oxygen carrier complexes affects the structure of the polymer matrix. The oxygen permeability through the composite membranes containing small quantities of ReCoP decreased, but it increased upon increasing the concentration. The oxygen gas transport was affected by the matrix at low ReCoP concentrations, but higher concentrations of ReCoP increased the oxygen permeability as a result of its reversible and specific interactions with oxygen, effectively realizing ReCoP carrier-mediated oxygen transport.