• Title/Summary/Keyword: oxygen reduction reaction activity

Search Result 105, Processing Time 0.024 seconds

Autoxidation Core@Anti-Oxidation Shell Structure as a Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell

  • Heo, Yong-Kang;Lee, Seung-Hyo
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.412-417
    • /
    • 2022
  • Proton exchange membrane fuel cells (PEMFCs) provide zero emission power sources for electric vehicles and portable electronic devices. Although significant progresses for the widespread application of electrochemical energy technology have been achieved, some drawbacks such as catalytic activity, durability, and high cost of catalysts still remain. Pt-based catalysts are regarded as the most efficient catalysts for sluggish kinetics of oxygen reduction reaction (ORR). However, their prohibitive cost limits the commercialization of PEMFCs. Therefore, we proposed a NiCo@Au core shell structure as Pt-free ORR electrocatalyst in PEMFCs. NiCo alloy was synthesized as core to introduce ionization tendency and autoxidation reaction. Au as a shell was synthesized to prevent oxidation of core NiCo and increase catalytic activity for ORR. Herein, we report the synthesis, characterization, electrochemical properties, and PEMFCs performance of the novel NiCo@Au core-shell as a catalyst for ORR in PEMFCs application. Based on results of this study, possible mechanism for catalytic of autoxidation core@anti-oxidation shell in PEMFCs is suggested.

Oxygen Reduction Reaction Evaluation of Synthesized 20% Pt/C with Beat Treatment by Chemical Reduction Method (화학환원법(化學還元法)을 이용(利用)해 제조(製造)한 20% Pt/C 캐소드 촉매(觸媒)의 열처리(熱處理)에 따른 산소환원반응(酸素還元反應) 평가(評價))

  • Kim, Jin-Hwan;Kang, Suk-Min;Thube, Dilip.R.;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.12-18
    • /
    • 2009
  • The 20% Pt/C catalysts were synthesized using the chemical reduction method for polymer electrolyte fuel cell cathode and were heat-treated in the temperature range from 300 to $600^{\circ}C$. The oxygen reduction reaction of the catalysts was evaluated using the electrochemical measurement. The oxygen reduction reaction of the heat-treated Pt/C at $300^{\circ}C$ had high catalytic activity and the oxygen reduction reaction current of that was 2 times than that of non-heat treatment catalyst. It is considered that the change of the crystallinity and particle size by heat treatment could increase the catalytic activity.

Preparation of Shape-Controlled Palladium Nanoparticles for Electrocatalysts and Their Performance Evaluation for Oxygen Reduction Reaction (연료전지 전극촉매용 팔라듐 나노입자 형상 제어 및 산소환원반응 성능 평가)

  • KIM, KYOUNG-HEE;LEE, JUNG-DON;LEE, HYOJUNE;PARK, SEOK-HEE;YIM, SUNG-DAE;JUNG, NAMGEE;PARK, GU-GON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2018
  • To design the practical core-shell electrocatalysts, combination of core and shell materials is important to meet catalytic activity and durability target. In general, Pd is considered as a good core material due to its best activity caused by strain/ligand effect. Preparing Pd nanoparticles can be a starting point in fabricating core-shell type electrocatalysts, much simplified Pd preparing process is suggested by using carbon monoxide (CO) as a reducing agent and/or capping agent. The solvent composition and reaction temperature can control to nanosheet, tetrahedron, and sphere without using additional stabilizer. Among them, Pd nanosheet which has mainly (111) plane showed about 3 times higher electrocatalytic activity for oxygen reduction reaction (ORR) to the spherical Pd nanoparticles. The enhanced ORR activity of Pd nanosheets can be attributed to the exposure of Pd (111) surface and the high electrochemical surface area. Therefore, we demonstrated that the shape of Pd nanomaterials is easily controlled via a facile reduction method using CO, and (111) plane-oriented Pd nanosheets can be a promising ORR catalysts and core material for polymer electrolyte fuel cells (PEFCs).

Phosphate-decorated Pt Nanoparticles as Methanol-tolerant Oxygen Reduction Electrocatalyst for Direct Methanol Fuel Cells

  • Choi, Jung-goo;Ham, Kahyun;Bong, Sungyool;Lee, Jaeyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.354-361
    • /
    • 2022
  • In a direct methanol fuel cell system (DMFC), one of the drawbacks is methanol crossover. Methanol from the anode passes through the membrane and enters the cathode, causing mixed potential in the cell. Only Pt-based catalysts are capable of operating as cathode for oxygen reduction reaction (ORR) in a harsh acidic condition of DMFC. However, it causes mixed potential due to high activity toward methanol oxidation reaction of Pt. To overcome this situation, developing Pt-based catalyst that has methanol tolerance is significant, by controlling reactant adsorption or reaction kinetics. Pt/C decorated with phosphate ion was prepared by modified polyol method as cathode catalyst in DMFC. Phosphate ions, bonded to the carbon of Pt/C, surround free Pt surface and block only methanol adsorption on Pt, not oxygen. It leads to the suppression of methanol oxidation in an oxygen atmosphere, resulting in high DMFC performance compared to pristine Pt/C.

Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS (수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.269-276
    • /
    • 2014
  • This study was aimed to develop catalytic system for the dry-based reduction of oxidized mercury ($Hg^{2+}$) to elemental mercury ($Hg^0$) which is one of the most important components comprising mercury continuous emission monitoring system (Hg-CEMS). Based on the standard potential in oxidation-reduction reaction, transition metals including Fe, Cu, Ni and Co were selected as possible candidates for catalyst proceeding spontaneous reduction of $Hg^{2+}$ into $Hg^0$. These transition metal catalysts revealed high activity for reduction of $Hg^{2+}$ into $Hg^0$ in the absence of oxygen in reactant gases. However, their activities were greatly decreased in the presence of oxygen, which was attributed to the transformation of transition metals by oxygen to the corresponding transition metal oxides with less catalytic activity for the reduction of oxidized mercury. Hydrogen supplied to the reactant gases significantly enhanced $Hg^{2+}$ reduction activity even in the presence of oxygen. It might be due to occurrence of combustion reaction between $H_2$ and $O_2$ causing the consumption of $O_2$ at such high reaction temperature at which oxidized mercury reduction reaction took place. Because the system showed high activity for $Hg^{2+}$ reduction to $Hg^0$, which was compatible to that of wet-chemistry technology using $SnCl_2$ solution, the catalytic reduction system of Fe catalyst with the supply of $H_2$ could be employed as a commercial system for the reduction of oxidized mercury to elemental mercury.

Recent Progress in the Identification of Active Sites in Pyrolyzed Fe-N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction

  • Sa, Young Jin;Kim, Jae Hyung;Joo, Sang Hoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2017
  • Iron and nitrogen codoped carbon (Fe-N/C) catalysts have emerged as one of the most promising replacements for state-of-the-art platinum-based electrocatalysts for oxygen reduction reaction (ORR) in polymer electrolyte fuel cells. During the last decade, significant progress has been achieved in Fe-N/C catalysts in terms of ORR activity improvement and active site identification. In this review, we focus on recent efforts towards advancing our understanding of the structure of active sites in Fe-N/C catalysts. We summarize the spectroscopic and electrochemical methods that are used to analyze active site structure in Fe-N/C catalysts, and the relationship between active site structure and ORR activity in these catalysts. We provide an overview of recently reported synthetic strategies that can generate active sites in Fe-N/C catalysts preferentially. We then discuss newly suggested active sites in Fe-N/C catalysts. Finally, we conclude this review with a brief future outlook.

Recent Developments of Metal-N-C Catalysts Toward Oxygen Reduction Reaction for Anion Exchange Membrane Fuel Cell: A Review

  • Jong Gyeong Kim;Youngin Cho;Chanho Pak
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.207-219
    • /
    • 2024
  • Metal-N-C (MNC) catalysts have been anticipated as promising candidates for oxygen reduction reaction (ORR) to achieve low-cost polymer electrolyte membrane fuel cells. The structure of the M-Nx moiety enabled a high catalytic activity that was not observed in previously reported transition metal nanoparticle-based catalysts. Despite progress in non-precious metal catalysts, the low density of active sites of MNCs, which resulted in lower single-cell performance than Pt/C, needs to be resolved for practical application. This review focused on the recent studies and methodologies aimed to overcome these limitations and develop an inexpensive catalyst with excellent activity and durability in an alkaline environment. It included the possibility of non-precious metals as active materials for ORR catalysts, starting from Co phthalocyanine as ORR catalyst and the development of methodologies (e.g., metal-coordinated N-containing polymers, metal-organic frameworks) to form active sites, M-Nx moieties. Thereafter, the motivation, procedures, and progress of the latest research on the design of catalyst morphology for improved mass transport ability and active site engineering that allowed the promoted ORR kinetics were discussed.

Electrochemical Evaluation and Synthesis of Pt/C and PtCo/C Catalysts for the Cathode of PEMFC (PEMFC용 캐소드를 위한 Pt/C, PtCo/C 촉매제조 및 전기화학평가)

  • Kim, Jin-Hwan;Ryu, Ho-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.45-49
    • /
    • 2008
  • For the commercialization of polymer electrolyte membrane fuel cell (PEMFC), some serious problems such as the decrease of platinum use as catalysts and a larger overpotential of oxygen reduction reaction (ORR) at cathode must be solved. In this study, 20%Pt/C and 20%PtCo/C catalysts for the cathode of PEMFC were synthesized from the chemical reduction method and evaluated using an electrochemical measurement. The ORR activity of synthesized 20%Pt/C and 20%PtCo/C had higher than that of the 20%Pt/C on the market. The synthesized 20%PtCo/C with the cobalt concentration (Pt:Co atomic ratio) from 5 to 20% showed the highest ORR activity.

  • PDF

Comparison of the Characteristics of Pd-Ir-Y Ternary Alloy Catalyst Particles and Oxygen Reduction Activity According to Yttrium Contents (이트륨 함량에 따른 Pd-Ir-Y 3원계 합금 촉매 입자의 특성과 산소 환원 반응의 활성 비교)

  • KIM, DO HYUNG;LEE, EUNAE;PAK, CHANHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.260-266
    • /
    • 2018
  • To enhance catalyst activity of the palladium (Pd) towards oxygen reduction reaction (ORR), iridium (Ir) and yttrium (Y) were alloyed by polyol method. Due to the low reduction potential of Y, it is hard to reduce Y ion completely by polyol method. In XPS spectra, the binding energy of the Pd is shifted to a lower value, which indicates the d-electron of Pd is filled by the electron from the Y. And other phases of Y are observed by the XPS. Among the catalysts, the $Pd_4IrY_{0.1}/C$ showed the best activity towards ORR, which indicates the metallic Y is effective for improving the catalytic activity. Thus, for further enhancing ORR activity, the novel method for complete reduction of Y is needed.

Synthesis of Co/PANi/CNT for PEMFC Non-precious Metal Catalyst (비백금 연료전지 촉매로서의 Co/PANi/CNT 합성 및 특성)

  • Lee, Hyo June;Ahn, Ji Eun;Kim, Hun-Jong;Han, M.K.;Kim, Hansung;Lee, H.W.
    • Applied Chemistry
    • /
    • v.15 no.1
    • /
    • pp.81-84
    • /
    • 2011
  • Platinum catalyst activity and stability is excellent in terms of fuel cells as a catalyst here. Although it is widely used, to compensate for the high price issue non-precious fuel cell catalysts are being developed. In this study, Co/PANi/CNT composite and non-precious as a catalyst for oxygen reduction was applied. Polyaniline on the interaction between cobalt and the oxygen reduction reaction and the structural characteristics observed in the impact and heat treatment was carried out according to the improved catalytic performance. Potential range is oxygen reduction reaction 0.55 V to 0.78 V(vs. NHE) after pyrolysis. Through this study, Co /PANi/CNT composites as a potential catalyst for fuel cells were non-precious.