• 제목/요약/키워드: oxygen production rate

검색결과 402건 처리시간 0.025초

Factors Affecting Oxygen Uptake by Yeast Issatchenkia orientalis as Microbial Feed Additive for Ruminants

  • Lee, J.H.;Lim, Y.B.;Park, K.M.;Lee, S.W.;Baig, S.Y.;Shin, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권7호
    • /
    • pp.1011-1014
    • /
    • 2003
  • The objective of this work was to evaluate a thermotolerant yeast Issatchenkia orientalis DY252 as a microbial feed additive for ruminants. In the present study, the influence of volatile fatty acids (VFA) and temperature on oxygen uptake rate by I. orientalis DY 252 was investigated. It was evident that the oxygen uptake rate was decreased gradually as the VFA concentrations increased in a range of 30 to 120 mM. Although the oxygen uptake rate was not greatly affected by temperature in the range 37 to $43^{\circ}C$, a maximum value of $0.45mg\;O_2/g$ cell/ min was obtained at $39^{\circ}C$. With regard to the oxygen uptake rate by yeast, viability was found to be less important than the metabolic activity of yeast.

침지조건이 브로콜리 발아에 미치는 영향 (Effect of broccoli sprouts germination by soaking water condition)

  • 박주영;유창훈;이인화;홍승호;차진명
    • KSBB Journal
    • /
    • 제23권6호
    • /
    • pp.551-553
    • /
    • 2008
  • 본 연구에서는 다양한 침지조건에서의 브로콜리 최적 발아조건을 찾기 위한 실험을 수행하였다. 그 결과 4시간동안 $20{\sim}30^{\circ}C$에서 10 ppm 이상의 용존산소를 공급하면서 침지하였을 경우 약 98.5%의 발아율을 보였다. 산소수의 영향을 관찰한 결과 7, 12 ppm에서 각각 76%, 92%의 발아율을 보였으며, 12 ppm 산소수 공급조건에서 7 ppm에 비해 2배 이상의 생장률을 확인할 수 있었다. 결과적으로 브로콜리의 발아율은 재배 시 산소수의 공급보다 침지 시 산소수를 공급할 경우 증가하는 것으로 판단된다.

Improved mevinolic acid (MA) production by the immobilized cells, and the establishment of on-line measurement system for fermentation parameters using vent gas analyzer

  • 송성기;김경희;김명진;이상종;장용근;정연호;정용섭;전계택
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.223-227
    • /
    • 2003
  • Mevinolic acid (MA), a secondary metabolite produced by a filamentous fungus Aspergillus terreus, is acidic form of lovastatin which has been identified as a powerful cholesterol-lowering agent in humans. When immobilized cell culture was performed, MA production was about 5.3-fold higher than the parallel suspended cell culture. Although the immobilized cells proliferated slowly during exponential in comparison with the suspended cells, oxygen uptake rate and oxygen mass transfer coefficient of the immobilized cell culture were about 1.3- and 2.5- fold higher respectively than those of the parallel suspended cell culture. From these results, it was concluded that MA biosynthesis was closely dependent on the cell growth rate, morphology and oxygen availability.

  • PDF

산화제 제어 화염의 구조 및 NO 생성 특성 (Structure and NO formation characteristics of oxidizer-controlled diffusion flames)

  • 한지웅;이창언
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.185-190
    • /
    • 2001
  • Numerical Study with detailed chemistry has been conducted to investigate the flame structure and NOx formation characteristics in oxygen-enhanced$(CH_4/O_2-N_2)$ and oxygen-enhanced-EGR$(CH_4/O_2-CO_2)$ counter diffusion flame with various strain rates. A small amount of $N_2$ is included in oxygen-enhanced-EGR combustion, in order to consider the inevitable $N_2$ contamination by $O_2$ production process or air infiltration. The results are as follows : In $CH_4/O_2-CO_2$ flame it is very important to adopt a radiation effect precisely because the effect of radiation changes flame structure significantly. In $CH_4/O_2-N_2$ flame special strategy to minimize NO emission is needed because it is very sensitive to a small amount of $N_2$. Special attention is needed on CO emission by flame quenching, because of increased CO concentration. Spatial NO production rate of oxygen-enhanced combustion is different from that of air and oxygen-enhanced-EGR combustion in that thermal mechanism plays a role of destruction as well as production. In case $CH_4/O_2-CO_2$ flame contains more than 40% $CO_2$ it is possible to maintain the same EINO as that of $CH_4/Air$ flame with accomplishing higher temperature than that of $CH_4/Air$ flame. EINO decreases with increasing strain rate, and those effects are augmented in $CH_4/O_2$ flame. Complementary study is needed with extending the range of strain rate variation.

  • PDF

Effects of Protein Kinase C Modulation on Hepatic Hemodynamics and Glucoregulation

  • Lee, Joong-Woo;Kong, In-Deok;Park, Kyu-Sang;Chung, Hae-Sook;Filkins, James P.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권6호
    • /
    • pp.571-578
    • /
    • 1999
  • This study evaluated the effects of PKC activation using phorbol 12-myristate 13-acetate (PMA) and PKC inhibition using the isoquinoline sulfomide derivative H-7 on hemodynamics and glucoregulation in the isolated perfused rat liver. Livers were isolated from fed male Holtzman rats and perfused with Krebs Ringer bicarbonate solution under a constant flow of 50 ml/min at $35^{\circ}C.$ Portal vein pressure, glucose and lactate concentrations in the medium and oxygen consumption rates were continuously monitored by a Grass polygraph, YSI glucose and lactate monitors, and a YSI oxygen monitor, respectively. PMA at concentration of 2 to 200 nM increased the portal vein pressure, glucose and lactate production, but decreased oxygen consumption rate in a dose-dependent fashion. H-7 $(200\;{\mu}M)$ attenuated PMA (50 nM)-induced vasoconstriction $(15.1{\pm}1.36\;vs\;10.56{\pm}1.17\;mmHg),$ glucose production rate $(91.3{\pm}6.15\;vs\;71.8{\pm}2.50\;{\mu}moles/g/hr),$ lactate production rate $(72.4{\pm}6.82\;vs\;53.6{\pm}4.82\;{\mu}moles/g/hr)$ and oxygen consumption rate $(33.7{\pm}1.41\;vs\;27.9{\pm}1.75\;{\mu}l/g/min).$ The effects of PMA were blocked either by addition of verapamil $(9\;{\mu}M)$ or perfusion with $Ca^{2+}-free$ KRB. These results suggest that the hemodynamic and glucoregulatory changes in the perfused rat liver are mediated by protein kinase C activation and require $Ca^{2+}$ influx from the extracellular fluid.

  • PDF

고율 조류 생세포체 배양지에서 조사 조건으로 본 조류 배양 특성 (Algae Culture Characteristics Viewed with Continuous and Cyclic Irradiation in High Rate Algae Biomass Culture Pond)

  • 공석기
    • 환경위생공학
    • /
    • 제14권3호
    • /
    • pp.123-129
    • /
    • 1999
  • The utilization methods of algae biomass have been studied constantly in whole world. These are $\circled1$the wastewater treatment if waste stabilization pond and oxidation ditch etc. and $\circled2$the biosorption of heavy metals and recovery of strategic' precious metals and $\circled3$the single-celled protein production and the production of chemicals like coloring agent and $\circled4$the production of electric energy through methane gasification. The culture system also has been developed constantly in relation with such utilization method developments. In the result of experimental operation under continuous and cyclic irradiation of light, using high rate algae biomass culture pond(HRABCP), which had been made so as to be an association system with the various items which had been managed to have high efficiency for algae culture, the algae production of the 12 hours-irradiance pond was 41.48 Chlorophyll-a ${\mu}g/L$ only in spite of having the more chance of $CO_2$ synthesis to algae cell than the 24 hours-irradiance pond. This means that the energy supply required for dark-reaction of photosynthesis is very important like this. The difference of algae production between continuous and cyclc irradiation explains that the dark-reaction of photosynthesis acts on algae production as the biggest primary factor. The continuous irradiance on HRABCP made the good algae-production($1403.97{\;}{\mu}g$ Chlorophyll-a/mg) and the good oxygen-production(5.8 mg $O_2/L$) and the good solid-liquid seperation. especially, DO concentration through the oxygen-production was enough to fishes' survival.

  • PDF

유가식 배양에서 재조합 대장균으로부터 Interferon ${\alpha}$-1 생산에 산소 공급이 미치는 영향 (Effect of Oxygen Supply on the Production of Interferon ${\alpha}$-1 by Recombinant Escherichia coli in Fed-batch Fermentation)

  • 이종길;문석영;김영준;신철수;구윤모
    • 한국미생물·생명공학회지
    • /
    • 제35권3호
    • /
    • pp.226-230
    • /
    • 2007
  • 산소를 많이 소비하는 발효공정일수록 배양액중의 용존산소의 농도가 목적생산물의 생산성에 많은 영향을 주는 경우가 많다. 때문에 고농도 발효에 앞서, 발효조의 sparging hole로부터 임펠러 높이에 따른 산소전달 능력을 알아본 결과 공기공급이 1 vvm, 교반속도가 600 rpm에서 산소전달계수($K_La$)는 2.67($min^{-1}$)으로 가장 높았다. 배양 시 용존산소 농도를 20% 이상 유지시켰을 때 온도에 따른 k6ub/IFN-${\alpha}1$ 생성은 $30^{\circ}C$에서 세포증식을 하고 $25^{\circ}C$에서 IPTG로 Induction 하였을 때 발현율이 6.43mg/ml로 total protein의 37%로 가장 많은 양이 발현되는 것을 알 수 있었다. 용존산소 농도에 따른 k6ub/IFN-${\alpha}1$의 발현양은 용존산소 농도가 35%일 때 가장 높은 수율을 나타냈다. 용존산소량은 산소소비 속도를 측정함으로써 정확한 임계점을 찾을 수 있었는데 용존산소량이 35% 유지될 때 산소 전달 속도와 비교하여 가장 적당한 산소공급량임을 확인할 수 있었다.

탱크 교반형 생물반응기의 scale-up이 Eschscholtzia californica 세포생장 및 알칼로이드 생성에 미치는 영향 (Effects of Stireed Tank Bioreactor Scale-up on Cell Growth and Alkaloids Production in Cell Cultures of Eschscholtzia californica)

  • 유병삼;변상요
    • KSBB Journal
    • /
    • 제13권6호
    • /
    • pp.700-705
    • /
    • 1998
  • Studies were made to investigate effects of the scale-up of stirred tank bioreactors on cell growth and alkaloids production for suspension cultures of Eschscholtzia californica. In the 1.5 L STR, cell lysis was observed at 110 rpm or higher agitation speed. The agitation speed of 30 L STR was 43.7 rpm to maintain the same shear stress developed in 1.5 L STR of 100 rpm. As a result of scale-up from 1.5 L to 30 L STR, the specific growth rate was decreased from 0.12 to 0.07 day-1. The alkaloids productivity was also decreased from 0.24 to 0.14 mg/L-day. Changes of mixing performance and oxygen transfer were studied to explain the decrease of cell growth and alkaloids production. Decreased oxygen transfer rate coefficient(KLa) and increased mixing time by the scale-up was observed at various aeration rates.

  • PDF

대구경 연속성장 초크랄스키법에서 고품질 잉곳 생산을 위한 연구 (Research for High Quality Ingot Production in Large Diameter Continuous Czochralski Method)

  • 이유리;정재학
    • Current Photovoltaic Research
    • /
    • 제4권3호
    • /
    • pp.124-129
    • /
    • 2016
  • Recently industry has voiced a need for optimally designing the production process of low-cost, high-quality ingots by improving productivity and reducing production costs with the Czochralski process. Crystalline defect control is important for the production of high-quality ingots. Also oxygen is one of the most important impurities that influence crystalline defects in single crystals. Oxygen is dissolved into the silicon melt from the silica crucible and incorporated into the crystalline a far larger amount than other additives or impurities. Then it is eluted during the cooling process, there by causing various defect. Excessive quantities of oxygen degrade the quality of silicone. However an appropriate amount of oxygen can be beneficial. because it eliminates metallic impurities within the silicone. Therefore, when growing crystals, an attempt should be made not to eliminate oxygen, but to uniformly maintain its concentration. Thus, the control of oxygen concentration is essential for crystalline growth. At present, the control of oxygen concentration is actively being studied based on the interdependence of various factors such as crystal rotation, crucible rotation, argon flow, pressure, magnet position and magnetic strength. However for methods using a magnetic field, the initial investment and operating costs of the equipment affect the wafer pricing. Hence in this study simulations were performed with the purpose of producing low-cost, high-quality ingots through the development of a process to optimize oxygen concentration without the use of magnets and through the following. a process appropriate to the defect-free range was determined by regulating the pulling rate of the crystals.

Effect of Flashing Light on Oxygen Production Rates in High-Density Algal Cultures

  • Park, Kyong-Hee;Kim, Dong-Il;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.817-822
    • /
    • 2000
  • A proper flashing light is expected to enhance microalgal biomass productivity and photosynthetic efficiency. The effect of flashing light on high-density Chlorella kessleri (UTEX 398) cultures was studied using light-emitting diodes. A frequency modulator was designed to flash LEDs, and the device successfully provided wide range of frequencies and various duty cycles of flashing. A relatively high frequencies of 10, 20 and 50 kHz were used in this study. These frequencies have very short flashing time ($2-50{\mu}s$), which corresponded to the time constant of the light reaction of photosynthesis. The specific oxygen production rates of photosynthesis under flashing light were compared with those under an equivalent continuous light in specially designed illumination cuvette. The specific oxygen production rates under flashing light were 5-25% higher than those under the continuous light. A range of cell concentration was discovered, where the benefit of flashing light was maximized. The photosynthetic efficiency was also higher under flashing light with frequencies of over 1 kHz, which was a clear indication of flashing light effect and the degree of mutual shading could by overcome by flashing lights, particularly at high-density algal cultures.

  • PDF