• Title/Summary/Keyword: oxygen production rate

Search Result 402, Processing Time 0.03 seconds

Use of Solar Cell and Nanofiltration Membrane for System of Enzymatic $H_2$ Production Through Light-Sensitized Photoanode (광바이오 수소제조 시스템에서의 쏠라셀 및 나노여과 멤브레인 활용)

  • Shim, Eun-Jung;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.151-156
    • /
    • 2007
  • Solar cell and nanofiltration membrane were utilized in a system of enzymatic hydrogen production through light-sensitized photoanode, which resembles photoelectrochemical(PEC) configuration. Solar cell uses no additional light energy to increase energy for electrons to reduce protons and for holes to oxidize water to oxygen, and nanofiltration membrane replaces a salt bridge successfully with increased ion transport capability. With this system configuration, optimized amount of enzyme(10.98 unit), and an anodized tubular $TiO_2$ electrode($5^{\circ}C$/1 hr in 0.5 wt% HF-$650^{\circ}C$/5 hr) hydrogen evolved at a rate of ca. $43\;{\mu}mol/(cm^2{\times}hr)$ in a cathodic compartment and oxygen generated at a rate of ca. $20\;{\mu}mol/(cm^2{\times}hr)$ in an anodic compartment. The stoichiometric evolution of gases indicated that water was splitted in the system.

Effects of endurance training for 4weeks on resting metabolic rate and excess post-exercise oxygen consumption in mouse

  • Jeon, Yerim;Kim, Jisu;Hwang, Hyejung;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 2012
  • This study assessed the amount of energy consumed and fat deposition after endurance training in order to review the effect of 4-week endurance exercise on resting metabolic rate of a mouse during and after exercise and the effect of exercise. A total of 19 seven-week-old ICR male mice were used as the study subject. Those mice were divided into sedentary group (Sed) and trained group (Tr) after a week of environment adaption. The Tr group was trained with endurance exercise five times a week for four weeks. Weight and the amount of food intake were daily weighed and resting metabolic rate and metabolic rate after exercise were assessed before starting exercise and on the fourth week after training. Metabolic rate during exercise were measured four weeks after training. At the end of breeding period, statistically significant difference was shown in weights of trained and sedentary groups (p < 0.05). During a resting period, no significant difference was shown in oxygen intake, respiratory exchange ratio, and the amount of carbohydrate and fat oxidized. Moreover, no significant difference was shown in excess post-exercise oxygen consumption (EPOC) of an hour period after training. In contrast, the maximal oxygen uptake (VO2 max) was approximately 11.1% higher in trained group after training compare to before. However, there was no significant difference in respiratory exchange ratio and carbohydrate and fat oxidization. During exercise, oxygen uptake, carbon dioxide production, and respiratory exchange ratio in energy metabolism during exercise showed no significant difference. However, significant difference was exhibited in the amount of fat oxidized in both groups. Summing up those results, endurance exercise could be concluded to be effective in weight control. However, weight loss is thought to be resulted from increase in fat oxidization during exercise unlike the conclusion made from previous studies where weight loss is prominently influenced by energy metabolism during a resting period and increased fat oxidation during post-exercise recovery. All experimental procedures were carried out at the Animal Experiment Research Center of Konkuk University. This study was conducted in accordance with the ethical guidelines of the Konkuk University Institutional Animal Care and Use Committee.

Combustion Characteristics for Varying Flow Velocity on Methane/Oxygen Diffusion Flames (메탄 산소 확산화염에서 유속 변화에 따른 연소특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1277-1284
    • /
    • 2005
  • The combustion characteristics of methane oxygen diffusion flames have been investigated to give basic information for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since the small amount of nitrogen is included from the current low cost oxygen production process. Flame lengths decreased with increasing fuel or oxygen velocity because of the enhancement of mixing effect. Correlation equation between flame length and turbulent kinetic energy was proposed. NOx concentration was reduced with increasing fuel or oxygen velocity because of the enhanced entrainment of the product gas into flame zone as well as the reduction of residence time in combustion zone.

Alkaline $\alpha$-amylase Production from Bacillus megaterium

  • Jia, Shiru;Lim, Chae-kyu;Seo, Gwang-Yeob;Nam, Hyung-Gun
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.40-46
    • /
    • 2009
  • The enzyme expressed from strain L-49 was 2.01 times higher than that of original strain. Strain L-49 can grow on culture plate with $50{\mu}g/mL$ ampicillin. The synthesis of $\alpha$-amylase was greatly suppressed when strain L-49 was grown on monosaccharide such as glucose and polysaccharide at the same time cell concentration was low. Amylase production was enhanced when the bacterium was grown on starch and dextrin. Among different nitrogen sources tried, yeast extract was found to be the best followed by panpeptone, peptone, meat extract, bean meal, and corn steep liquor. The average rate of enzyme production was enhanced for 3~4 times in fermentation time from 24h to 44h. The sugar uptake rate has also increased. Low oxygen supply rate enhanced the rate of strain propagation but depressed the enzyme production. Hence it is benefit to obtain high enzyme activity that agitation speed maintained not lower than 400r/min and aeration rate maintained greater than 1:1vvm.

Determination of Oxygen Transfer Coefficient in Fed-Batch Culture of Streptomyces avermitilis with Concentrated Medium Control (농축 배지 조절 유가식 배양에 의한 Streptomyces avermitilis의 산소전달계수 측정)

  • 오종현;전계택;정요섭
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.516-522
    • /
    • 2001
  • The large-scale production of antibiotics by filamentous mycelial organism requires and adequate supply of dissolved oxygen. In terms of productivity, it means that oxygen transfer is the rate-limiting step. Therefore, the oxygen transfer coefficients(K$\_$L/A) were determined in a broth involving a filamentous mycelial organism such as Streptomyces avermitilis for use in fermentations. To determine (K$\_$L/A) inn a stirred vessel, a great deal of effort is required to provide all the cells with a sufficient oxygen supply. To overcome the oxygen limitation in a batch culture, a fed-batch culture was applied to control the growth rate by an intermittent supply of nutrients. Thus, it was possible to maintain a suitable dissolved oxygen concentration at a low agitation rate. The optimal agitation speed was 350 rpm at low cell concentrations (below 7 g/L) by considering the efficiency of agitation and shear stress. The (K$\_$L/A) was found to decrease from 64.26 to 29.21h.$\^$-1/ when the biomass concentration was increased from 9.82 to 12.06 g/L. In addition, and increase in viscosity was also observed during the growth phase. By comparing the (K$\_$L/A) values for the various agitation and aeration rates, it was found that the effect of an increase in (K$\_$L/A) by aeration was reduced dramatically at high biomass concentrations. However, this effect was not observed when altering the agitation rate. This suggests that controlling the dissolved oxygen concentration by altering the agitation rate was more efficient than increase the aeration rate.

  • PDF

The fermentation kinetics of protease inhibitor production by streptomyces fradiae (Streptomyces fradiae에서 분리한 단백질 분해효소 저해물질 생성의 동력학적 특성)

  • 이병규;정영화;이계준
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.264-267
    • /
    • 1990
  • The objectives of the current studies were to establish the optimal conditions for the production of extracellular protease inhibitor in a strain of Streptomyces fradiae. As results, it was found that cell specific growth rate was very critical for the production of protease inhibitor and the optimum specific growth rate was found to be 0.05 h$^{-1}$ . Dissolved oxygen tension and pH were also important to regulate the inhibitor production. The inhibitory mode of the purified inhibitor to .alpha.-chymotrypsin was found to be competitive (K$_{i}$=5.5*10$^{-7}$ M). One mole of inhibitor could bind two moles of .alpha.-chymotrypsin and the complex has very low dissociation constant.t.

  • PDF

Effect of the aeration rate and agitation speed on heteropolysaccharide-7 production by Beijerinckia indica

  • Jin, Hyeok;Yang, Jae-Gyun;Jeong, Jeong-Han;Jo, Yeong-Su;Lee, Dong-Su;Sin, Myeong-Gyo;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.192-195
    • /
    • 2002
  • Effect of aeration rate and agitation speed on cell growth and the production of heteropolysaccharide-7 (PS-7) by Beijerinckia indica was investigated. Aeration rate and agitation speed in a 7L bioreactor ranged from 0.5 to 1.5 vvm and from 300 to 500 rpm, respectively. Higher agitation speed with an aeration rate of 0.5 vvm in the bioreactor resulted in maintenance of higher concentration of dissolved oxygen in the medium, which enhanced the production of PS-7. In this study with a 7L bioreactor, maximal production of PS-7 was 11.0 g/L and its conversion rate from 2% (w/v) glucose was 0.55 when the aeration rate and agitation speed were 1.0 vvm and 500 rpm, respectively. Proper aeration rate and agitation speed might enhance the production of PS-7 as well as reduce the time to reach maximal production.

  • PDF

Effect of Cell Density on Xylitol Fermentation by Candida parapsilosis (Candida parapsilosis에 의한 Xylitol 생산시 균체농도가 미치는 영향)

  • Kim, Sang-Yong;Yoon, Sang-Hyun;Kim, Jung-Min;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.970-973
    • /
    • 1996
  • Effect of cell density on the xylitol production from xylose by Candida parapsilosis KFCC 10875 was investigated. The concentrated cells were obtained by centrifugation of culture broth. The xylitol production rate was maximum at the cell concentration of 20 g/l and the specific xylitol production rate decreased when the cell concentration was increased due to oxygen limitation. Effect of the initial concentration of xylose on the xylitol production was also examined using the concentrated cells of 20 g/l. The xylitol production rate, specific xylitol production rate, and xylitol yield from xylose were maximum at 170 g/l xylose. Above 170 g/l xylose, the xylitol production rate was remarkably decreased. The concentrated cells could also be obtained by adjusting the dissolved oxygen (DO) during fermentation. The rapid accumulation of cells up to 20 g/l was achieved by maintaining an increased level of DO during the exponential growth phase and then, for the efficient xylitol production, the DO was changed to a low level in the range of 0.7-1.5%. A fed-batch fermentation of xylose by adjusting the DO level was carried out in a fermentor and the final xylitol concentration of 140 g/l from xylose of 200 g/l could be obtained for 56 h fermentation.

  • PDF

Ethanol Production from Xylose by Pichia stipitis Using Cell-recycled Bilreactor (Pichia stipitis 세포의 재순환 생물반응기를 이용한 Xylose로부터 Ethanol 생산)

  • 박영민;정인식;크리스론식;이윤형
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.74-77
    • /
    • 1989
  • To increase the volumetric productivity a contimuous cell-recycled system was implemented. Cell concentrations between 9.2 and 15.0 g/1 were obtatined in the continuous fermentor study. At a 4% xylose feed and a specific oxygen supply rate(SOSR) of 1.04 g O2.hr-g DCW the ethanol yield was 0.36% at dilution rate. This represented a 26-% increase over that of th batch fermentation.

  • PDF

Inhibition of Biological Perchlorate Reduction by Nitrate and Oxygen (질산염과 산소에 의한 생물학적 퍼클로레이트 환원의 저해)

  • Choi, Hyeok-Sun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.29-34
    • /
    • 2009
  • In this study, a chloride ion probe as a direct measurement for perchlorate reduction was used to determine whether biological perchlorate reduction was inhibited by other electron acceptors ($O_2$ and ${NO_3}^-$) and to investigate competition of electron acceptors for using electron donors. Profiles of chloride production (= perchlorate reduction) in flasks containing perchlorate reducing populations were monitored by a chloride ion probe. Biological reduction of 2 mM perchlorate was inhibited by 2 mM nitrate that chloride production rate was decreased by 30% compared to perchlorate used as the only electron acceptor and chloride production rate was decreased by 70% when acetate was limited. Reduction of 2mM perchlorate was completely inhibited by oxygen at 7~8 mg/L, regardless of acetate excess / limitation.