• Title/Summary/Keyword: oxygen production rate

Search Result 403, Processing Time 0.024 seconds

Effects of Different Exercise Training Mode on Exercise Specificity and Transability (트레이닝 형태의 차이가 운동 특이성(exercise specificity)과 전사효과(transability)에 미치는 영향)

  • Kim, Young-Il;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.968-975
    • /
    • 2009
  • The purpose of the present study was to examine effects of different exercise training modes (Aerobic Training, Resistance Training) on exercise specificity and transability. The tested subjects, composed of 10 healthy males without known family history or medical illnesses, were divided into two groups: Aerobic Training Group (ATG; n=5) and Resistance Training Group (RTG; n=5). An aerobic training program, based on maximum oxygen consumption rates taken during standard testing, was conducted in 60 minute sessions 3 times a week, and the Heart Rate Reserve (HRR) at 70% of maximum oxygen consumption rate was measured the using Polar. In the weight training program, based on repetition maximum rate (1-RM) taken during standard testing, the weight at 70% of such rates was measured during 60 minute sessions of 7 categories of exercise (Bench press, Leg press, Squat, Shoulder press, Arm curt Lat pull down, Triceps pull down), conducted 3 times a week. The data collected from this research were calculated to obtain average and differences compared to standards using an SPSS 11.0 statistics package. In conclusion, increase in V0$_{2max}$ and production of NO$_x$ (NO$_2$/NO$_3$), reduction of %fat, MAPwere shown effective in aerobic training and in different exercise tests, and aerobic testing within the aerobic training group (ATG) was shown to be more effective. In contrast, resistance training was shown to be more effective for the reduction of CK and LDH, and even in different tests, the resistance test within the resistance training group (RTG) showed to be more effective. Exercise specificity also significantly increased in both groups (ATG, RTG). but there was no significant difference in transability in both groups (ATG, RTG).

Integrated Digestion of Thermal Solubilized Sewage Sludge to Improve Anaerobic Digestion Efficiency of Organic Waste (유기성 폐기물의 혐기성 소화효율 향상을 위한 열가용화 하수슬러지의 통합소화)

  • Oh, Kyung Su;Hwang, Jung Ki;Song, Young Ju;Kim, Min Ji;Park, Jun Gyu;Pak, Dae Won
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • Studies for improving the efficiency of the traditional anaerobic digestion process are being actively conducted. To improve anaerobic digestion efficiency, this study tried to derive the optimal pretreatment conditions and mixing conditions by integrating the heat solubilization pretreatment of sewage sludge, livestock manure, and food waste. The soluble chemical oxygen demand (SCOD) increase rate of sewage sludge before and after heat solubilization pretreatment showed an increased rate of 224.7% compared to the control group at 170℃ and 25 min and showed the most stable increase rate. As a result of the biomethane potential test of sewage sludge before and after heat solubilization pretreatment, the total chemical oxygen demand (TCOD) and SCOD removal rates increased as the heat solubilization temperature increased, but did not increase further at temperatures above 170℃. In the case of methane generation, there was no significant change in the cumulative methane generation from 0.134 to 0.203 Sm3-CH4/kg-COD at 170℃ for 15 min. As a result of the integrated digestion of organic waste, the experimental condition in which 25% of the sewage sludge, 50% of the food waste, and 25% of the livestock manure were mixed showed the highest methane production of 0.3015 m3-CH4/kg-COD, confirming that it was the optimal mixing ratio condition. In addition, under experimental conditions mixed with all three substrates, M4 conditions mixed with 25% sewage sludge, 50% food waste, and 25% livestock manure showed the highest methane generation at 0.2692 Sm3-CH4/kg-COD.

Arachidonate-induced Oxygen Radical Production and Cellular Damage in Ischemic-Reperfused Heart of Rat (허혈-재관류 적출심장에서 Arachidonic Acid에 의한 산소라디칼 생성 및 심근손상)

  • Lee, Yun-Song;Kim, Yong-Sik;Park, Seong-Ho;Myung, Ho-Jin;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.109-118
    • /
    • 1991
  • The present study was conducted to assess the possible contribution of arachidonic acid to generation of reactive oxygen metabolites and myocardial damage in ischemic-reperfused heart. Langendorff preparations of isolated rat heart were made ischemic by hypoperfusion (0.5 ml/min) for 45 min, and then followed by normal oxygenated reperfusion (7 ml/min). The generation of superoxide anion was estimated by measuring the SOD-inhibitable ferricytochrome C reduction. The myocardial cellular damage was observed by measuring LDH released into the coronary effluent. Oxygenated reperfusion following a period of ischemia produced superoxide anion, which was inhibited by both indomethacin (60 nmole/ml) and ibuprofen $(30\;{\mu}g/ml)$. Sodium arachidonate $(10^{-7}-10^{-2}{\mu}g/ml)$ administered during the period of oxygenated reperfusion stimulated superoxide anion production dose-dependently. The rate of arachidonate-induced superoxide generation was markedly inhibited by indomethacin, a cyclooxygenase inhibitor; nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, and by eicosatetraynoic acid (ETYA), a substrate inhibitor of arachidonic acid metabolism. The release of LDH was increased by Na arachidonate and was inhibited by superoxide dismutase. The release of LDH induced by arachidonic acid was also inhibited by indomethacin, NDGA and ETYA. In conclusion, the present result suggests that arachidonic acid metabolism is involved in the production of reactive oxygen metabolite and plays a contributory role in the genesis of reperfusion injuy of myocardium.

  • PDF

State of Aquaculture Management for Optimal Rearing of Eel Anguilla japonica (뱀장어(Anguilla japonica) 적정 사육관리를 위한 양식기술 현황)

  • Son, Maeng-Hyun;Kim, Kang-Woong;Kim, Kyoung-Duck;Kim, Shin-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • This study was conducted to investigate the production, elver stocking, rearing facilities and rearing method of eel culture to determine aquaculture management conditions for optimal rearing of eel Anguilla japonica. The production of eel culture was evaluated by the proportion of eels from the main inland fin fish species production in Korea. Elver stocking was assessed by the elver stocking densities of pond and recirculation culture. Rearing facilities were investigated according to the rearing tank size proportion of the pond and recirculation culture. We selected sample farms by region and by size. We visited sample farms and recorded the number of elvers stock for pond area, size of tanks, feed and feed quantity, and the size and number of harvest eels. The production capacity of Jeollanam-do and Jeollabuk-do were 71.9% and 21.3% respectively. This production quantity represented 93.2% of the total Korean eel production quantity. In Jeollanam-do, there are 236 eel farms, 202 pond farms, and 34 recirculation aquaculture facilities. The elvers' first density data by each aquaculture method revealed that elvers' first density varied more in recirculation system farms, as compared to pond aquaculture. In intensive pond farms, the elvers' first density decreased as the size of farm increased. There was a correlation between the size of tank(x) and the facility of a water wheel for dissolved oxygen in pond culture systems(y=0.022x-0.494; $R^2$=0.860). Another strong correlation was found between the weight of eel(x) and eel density(y) in pond culture systems(y=283.5x-0.27; $R^2$=0.992). Finally, there was a strong correlation between the length of eel(x) and the weight of eel(y) in intensive pond culture(y=0.0005x-3.2783; $R^2$=0.9775). The final survival rate did not differ significantly among pond sizes and culture types.

Hematological Responses, Survival, and Respiratory Exchange in the Olive Flounder, Paralichthys olivaceus, during Starvation

  • Park, I.S.;Hur, J.W.;Choi, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1276-1284
    • /
    • 2012
  • A 12-wk experiment was conducted to examine the hematological changes, survival, and respiratory exchange in the olive flounder, Paralichthys olivaceus, during starvation. The growth, survival and respiratory exchange rates of the starved group were lower than those of the fed group during the experiment. Blood analysis, including hematocrit, hemoglobin, red blood cells, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and mean corpuscular volume, did not differ significantly (p>0.05) between the fed and starved groups at the end of the experiment. There were no significant differences in plasma cortisol, glucose, $Na^+$, $Cl^-$, $K^+$, or aspartate aminotransferase between the fed and starved groups (p>0.05). Alanine aminotransferase levels were higher in the starved group than in the fed group, whereas plasma osmolality was lower in the starved group than in the fed group. It was shown that starved fish had various problems after four weeks, which did not occur in the fed group. Long-term starvation is infrequent in aquaculture farms. However, starvation studies of this kind are very useful for a basic understanding of how physiological changes affect fish health, life expectancy, and growth.

Generation of Silver Nanoparticles by Spark Discharge Aerosol Generator Using Air as a Carrier Gas (공기 분위기에서 스파크 방전을 이용한 은 나노입자 생성)

  • Oh, Hyun-Cheol;Jung, Jae-Hee;Park, Hyung-Ho;Ji, Jun-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.170-176
    • /
    • 2006
  • A spark discharge aerosol generator using air as a carrier gas has successfully been applied to silver nanoparticle production. The spark discharge between two silver electrodes, which was periodically obtained by discharging the capacitor, produced sufficient high temperatures to evaporate a small fraction of the silver electrodes. The silver vapor was subsequently supersaturated by rapid cooling and condensed to silver nanoparticles by nucleation and condensation. The morphology of the generated particles observed by transmission electron microscope was spherical. The element composition of the nanoparticles was silver, which was determined by energy dispersive X-ray spectroscopy. The crystal phase of the particles spark-generated under air atmosphere was composed of silver and silver oxides phase, which was determined by Xray diffraction analysis. While the nanoparticles generated under nitrogen atmosphere had only silver phase. This XRD data indicates that some fraction of the evaporated silver vapor could be oxidized in air atmosphere by the reaction with oxygen. A stable operation of the spark discharge generator has been achieved. The size and concentration of the particles can be easily controlled by altering the repetition frequency, capacitance, gap distance and flow rate of the spark discharge system.

SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 1. Comparison of Aerobic vs. Anaeriobic Synthesis and Characterization of Nanoparticles

  • Song, Ho-Cheol;Carraway, Elizabeth R.;Kim, Young-Hun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.165-173
    • /
    • 2005
  • Nano-sized iron particles were synthesized by reduction of $Fe^{3+}$ in aqueous solution under two reaction conditions, aerobic and anaerobic, and the reactivity of iron was tested by reaction with trichloroethene (TCE) using a batch system. Results showed that iron produced under anoxic condition for both synthesis and drying steps gave rise to iron with higher reduction reactivity, indicating the presence of oxygen is not favorable for production of nano-sized iron deemed to accomplish reactivity enhancement from particle sized reduction. Nano-sized iron sample obtained from the anoxic synthesis condition was further characterized using various instrumental measurements to identity particle morphology, composition, surface area, and particle size distribution. The scanning electron microscopic (SEM) image showed that synthesized particles were uniform, spherical particles (< 100 nm), and aggregated into various chain structures. The effects of other synthesis conditions such as solution pH, initial $Fe^{3+}$ concentration, and reductant injection rate on the reactivity of nano-sized iron, along with standardization of the synthesis protocol, are presented in the companion paper.

Potency of Botryococcus braunii cultivated on palm oil mill effluent wastewater as a source of biofuel

  • Azimatun Nur, Muhamad Maulana;Setyoningrum, Tutik Muji;Budiaman, I Gusti Suinarcana
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Indonesia is known as the largest oil palm producer in the world. However, along with the production, it generates wastes and pollution that caused the environmental problem in surrounding areas. Previous researchers reported that the high palm oil mill effluent (POME) concentration inhibited microalgae growth. However, the inhibition factor was not clearly explained by using kinetic model. This study presents kinetic models of Botryococcus braunii (B. braunii) cultivated on POME wastewater under different turbidity condition. Results showed that the growth model of Zwietering was closely suitable with experimental results. It was found that B. braunii was able to consume organic carbon from the POME wastewater on the logarithmic model. A modified kinetic model of Monod Haldane described the influence of turbidity and chemical oxygen demand on the cultivation. Turbidity of POME medium inhibited the growth rate at KI 3.578 and KII 179.472 NTU, respectively. The Lipid (39.9%), and carbohydrate (41.03%) were found in the biomass that could be utilized as biofuel source.

Resource recovery and harmless treatment of waste oil-in-water drilling fluid

  • Tang, Chao;Xie, Shui Xiang
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.277-280
    • /
    • 2017
  • Destablization and demulsification is a difficult task for the treatment of waste oil-in-water drilling fluid because of its "three-high" characteristics: emulsification, stabilization and oiliness. At present, China is short for effective treating technology, which restricts cleaner production in oilfield. This paper focused on technical difficulties of waste oil-in-water drilling fluid treatment in JiDong oilfield of China, adopting physical-chemical collaboration demulsification technology to deal with waste oil-in-water drilling fluid. After oil-water-solid three-phase separation, the oil recovery rate is up to 90% and the recycled oil can be reused for preparation of new drilling fluid. Meanwhile, harmless treatment of wastewater and sludge from waste oil-in-water drilling fluid after oil recycling was studied. The results showed that wastewater after treated was clean, contents of chemical oxygen demand and oil decreased from 993 mg/L and 21,800 mg/L to 89 mg/L and 3.6 mg/L respectively, which can meet the requirements of grade one of "The National Integrated Wastewater Discharge Standard" (GB8978); The pollutants in the sludge after harmless treatment are decreased below the national standard, which achieved the goal of resource recovery and harmless treatment on waste oil-in-water drilling fluid.

The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts

  • Duan, Huamei;Yang, Yunxia;Patel, Jim;Burke, Nick;Zhai, Yuchun;Webley, Paul A.;Chen, Dengfu;Long, Mujun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.33-42
    • /
    • 2018
  • Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by $N_2$-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of $N_2$-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ ($23mmol-CH_3OH/(g-Cu{\cdot}h)$) was higher, on Cu loading basis, than that of CZA ($9mmol-CH_3OH/(g-Cu{\cdot}h)$). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.