• Title/Summary/Keyword: oxygen production rate

Search Result 403, Processing Time 0.021 seconds

The antioxidant capacity of Mito-TEMPO improves the preimplantation development and viability of vitrified-warmed blastocysts through the stabilization of F-actin morphological aspects in bovine embryos

  • Jae-Hoon Jeong;Hyo-Jin Park;Seul-Gi Yang;Deog-Bon Koo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.231-238
    • /
    • 2022
  • Reactive oxygen species (ROS) production and F-actin cytoskeleton dynamics play important roles in the survival rate of blastocysts after the vitrified-warming process. However, the protective effects of Mito-TEMPO against cryo-injury and viability through F-actin aggregation and mitochondrial-specific ROS production in vitrificated-warmed bovine embryos have not been investigated. The aims of the present study were to: (1) determine the effects of Mito-TEMPO on embryonic developmental competence and quality by F-actin stabilization during in vitro culturing (IVC), and (2) confirm the effects of Mito-TEMPO through F-actin structure on the cryotolerance of vitrification-warming in Mito-TEMPO exposed in vitro production (IVP) of bovine blastocysts. Bovine zygotes were cultured with 0.1 μM Mito-TEMPO treatment for 2 days of IVC. Mito-TEMPO (0.1 μM) exposed bovine embryos slightly improved in blastocyst developmental rates compared to the non-treated group. Moreover, the viability of vitrified-warmed blastocysts from Mito-TEMPO treated embryos significantly increased (p < 0.05, non-treated group: 66.7 ± 3.2% vs Mito-TEMPO treated group: 79.2 ± 5.9%; re-expanded at 24 hours). Mito-TEMPO exposed embryos strengthened the F-actin structure and arrangement in the blastocyst after vitrification-warming. Furthermore, the addition of Mito-TEMPO into the IVC medium enhanced embryonic survival and quality through F-actin stabilization after the vitrification-warming procedure. Overall, our results suggest that supplementing the culture with 0.1 μM Mito-TEMPO improves the embryonic quality and cryo-survival of IVP bovine blastocysts.

The Environmental Characteristics and Factors on the Cultured manila clam (Ruditapes philippinarum) at Hwangdo and Jeongsanpo of Taean in the West coast of Korea (서해 연안 황도와 정산포 바지락 양식장의 환경특성)

  • Choi, Yoon Seok;Song, Jae Hee;Yoon, Sang Pil;Chung, Sang Ok;An, Kyoung Ho;Park, Kwang Jae
    • The Korean Journal of Malacology
    • /
    • v.30 no.2
    • /
    • pp.117-126
    • /
    • 2014
  • To assess the effect of environmental factors on the sustainability of cultured production manila clam (Ruditapes philippinarum), we investigated the habitat characteristics of tidal flat (Hwangdo and Jeongsanpo in Taean). We measured the physiochemical parameters (temperature, salanity, pH, dissolved oxygen and nutrients) and the characteristics (mean size, chemical oxygen demand, ignition loss, C/N ratio and C/S ratio) of surface sediments. The C/N ratio of Hwangdo and Jeongsanpo were 9.0, 5.3 and the C/S ratio was 0.162, 0.159. The concentration of chlorophyll a at Hwangdo was higher than that of Jeongsanpo and species of micro algae were 102 and 100. The enrichment factor (Ef) and index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. So two survey area of cultured clams in the tidal flat have been effected by the various environmental conditions, there are needed an improvement methods and continuous research for increasing the production of manila clam (Ruditapes philippinarum).

The Effects of Swimming Training on Lymphocyte Proliferation and ROS Production in Spleen Lymphocytes of BALB/c Mice (규칙적인 수영훈련이 마우스 비장세포의 ROS생성과 림프구 증식에 미치는 영향)

  • Kwak, Yi-Sub;Park, Jeon-Han;Kim, Se-Jong;Jang, Yun-Soo;Lee, Bong-Ki
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.96-101
    • /
    • 2002
  • Background: Aerobic training can be defined as any physical exercise that increases the heart rate and enhances the body's intake of oxygen long enough to benefit the condition of body. Running, cycling, and swimming are examples of aerobic activities. This type of exercise optimises immune functions. Recently several experimental findings suggested that the regular swimming training increase immune response, but there have been very few reports which compare warm water exercise with cold water exercise in spleen lymphocytes. Methods: This study was designed to examine the effects of regular swimming training on Index, the number of lymphocytes, proliferative activity and production of reactive oxygen species (ROS) by splenocytes in BALB/c mice. Thirty six mice (6 week old) were performed 10 weeks of regular swimming training and they were divided into 6 groups according to the regular swimming training (CRG: control resting group, CEG: control exercise group, WRG: warm water trained resting group, WEG: warm water trained exercise group, CORG: cold water trained resting group, COEG: cold water exercise group). Analytical items were weight change, spleen index, the number of lymphocytes, proliferative activity and production of ROS. All data were expressed as mean and standard deviation by using SPSS package program (ver. 10.0). Results: The swimming training significantly decreased body weight, and increased spleen index, the number of lymphocytes and proliferative activity in the presence or absence of Con A and LPS added conditions. For the WRG and CORG, the quantity of ROS from splenocytes was higher than CRG, whereas, ROS by spleen lymphocytes was lower following 90 min acute exercise stress. Conclusion: These results suggested that the swimming training not only increases the number of lymphocytes but also increases proliferative activity by splenocytes in vitro.

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis (음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화)

  • Hoseok Lee;Shin-Woo Myeong;Jun-young Park;Eon-ju Park;Sungjun Heo;Nam-In Kim;Jae-hun Lee;Jae-hun Lee;Jae-Yeop Jeong;Song Jin;Jooyoung Lee;Sang Ho Lee;Chiho Kim;Sung Mook Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrah buffalo

  • Yadav, Brijesh;Pandey, Vijay;Yadav, Sarvajeet;Singh, Yajuvendra;Kumar, Vinod;Sirohi, Rajneesh
    • Journal of Animal Science and Technology
    • /
    • v.58 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2016
  • Background: Heat stress adversely affects the physiological and metabolic status, and the productive performance of buffalo. Methods: The present study was conducted to explicate the effect of misting and wallowing cooling strategies during heat stress in lactating Murrah buffalo. The study was conducted for three months (May-July) of which first two months were hot dry and last month was hot humid. Eighteen lactating buffaloes, offered the same basal diet, were blocked by days in milk, milk yield and parity, and then randomly allocated to three treatments: negative control (no cooling), cooling by misting, and cooling by wallowing. Results: The results showed higher (P < 0.05) milk yield in buffaloes of misting and wallowing group compared to control during the experimental period however wallowing was found more (P < 0.05) effective during July (hot humid period). Both the treatments resulted into significant (P < 0.05) reduction in rectal temperature (RT) and respiratory rate (RR) compared to control animals during study period whereas wallowing was found to be effective on pulse rate (PR) only during July. Both treatments were resulted in mitigating the heat stress mediated decrease in packed cell volume (PCV), lymphocytopnoea and neutrophilia whereas decrease in total erythrocyte count (TEC) and monocytes was only mitigated by wallowing. Heat load induced alteration in serum creatinine and sodium concentration was significantly (P < 0.05) ameliorated by misting and wallowing whereas aspartate aminotransferase, alkaline phosphatase and superoxide dismutase activity, and reactive oxygen species concentration could be normalized neither by misting nor by wallowing. The significant (P < 0.05) increment in serum cortisol and prolactin levels observed in June and July period in control animals was significantly (P < 0.05) prevented by misting and wallowing. Conclusions: It can be concluded that misting and wallowing were equally effective in May and June (hot dry period) whereas wallowing was more effective during hot humid period in preventing a decline in milk production and maintaining physiological, metabolic, endocrine and redox homeostasis.

Effect of Antioxidant Flavonoids (Quercetin and Taxifolin) on In vitro Maturation of Porcine Oocytes

  • Kang, Jung-Taek;Moon, Joon Ho;Choi, Ji-Yei;Park, Sol Ji;Kim, Su Jin;Saadeldin, Islam M.;Lee, Byeong Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.352-358
    • /
    • 2016
  • Quercetin (QT) and taxifolin (TF) are structurally similar plant-derived flavonoids that have antioxidant properties and act as free radical scavengers. The objective of this study was to investigate effects of QT and TF on nuclear maturation of porcine oocytes. Effects of TF at 0, 1, 10, and $50{\mu}g/mL$ on oocyte nuclear maturation (polar body extrusion) were investigated. After incubation for 44 h, there were no significant differences between the treatment and control groups except in the $50{\mu}g/mL$ group which was significantly lower (59.2%, p<0.05) than the other groups (control: >80%). After parthenogenetic activation, further in vitro development of QT- or TF-treated vs control oocytes was investigated. A significantly higher proportion of QT-treated ($1{\mu}g/mL$) oocytes developed into blastocysts compared to controls (24.3% vs 16.8%, respectively); however, cleavage rate and blastocyst cell number were not affected. The TF-treated group was not significantly different from controls. Levels of reactive oxygen species (ROS) and intracellular glutathione (GSH) in oocytes and embryos in a culture medium supplemented with QT or TF were measured. Both treatment groups had significantly lower (p<0.05) levels of ROS than controls, however GSH levels were different only in QT-treated oocytes. We conclude that exogenous flavonoids such as QT and TF reduce ROS levels in oocytes. Although at high concentration ($50{\mu}g/mL$) both QT and TF appear to be toxic to oocytes.

Role of Exogenous Nitric Oxide Generated through Microwave Plasma Activate the Oxidative Signaling Components in Differentiation of Myoblast cells into Myotube

  • Kumar, Naresh;Shaw, Priyanka;Attri, Pankaj;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.158-158
    • /
    • 2015
  • Myoblast are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of skeletal muscle; The neuronal isoform of nitric oxide synthase (nNOS, termed also NOS-I) is expressed in normal adult skeletal muscle, suggesting important functions for Nitric oxide (NO) in muscle biology1,2,3. However, the expression and subcellular localization of NO in muscle development and myoblast differentiation are largely unknown. In this study, we examined effects of the nitric oxide generated by a microwave plasma torch, on proliferation/differentiation of rat myoblastic L6 cells. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimetres per minute. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the ratio of oxygen gas, and the microwave power4. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to L6 skeletal muscles. Differentiation of L6 cells into myotubes was significantly enhanced the differentiation after nitric oxide treatment. Nitric oxide treatment also increase the expression of myogenesis marker proteins and mRNA level, such as myogenin and myosin heavy chain (MHC), as well as cyclic guanosine monophosphate (cGMP), However during the myotube differentiation we found that NO activate oxidative stress signaling erks expression. Therefore, these results establish a role of NO and cGMP in regulating myoblast differentiation and elucidate their mechanism of action, providing a direct link with oxidative stress signalling, which is a key player in myogenesis. Based on these findings, nitric oxide generated by plasma can be used as a possible activator of cell differentiation and tissue regeneration.

  • PDF

Effect of Vitamin C on Oxidative Stress Induced by Daidzein and Genistein in Hamster Ovary Cells (햄스터 난소세포에서 Daidzein과 Genistein에 의해 유도된 산화적 스트레스에 대한 Vitamin C의 효과)

  • Kim, Min-Hye;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • The oxidative stress causes many diseases like cancer, aging, cardiovascular disease, degenerative neurological disorders (Parkinson’s disease, and Alzheimer's disease) by damage of cell membrane, protein deformation, and damage of DNA due to the oxidation of lipid of cell membrane, protein of tissue or enzyme, carbohydrate, and DNA. It is caused by the reactive oxygen species (ROS) that is produced in the metabolic process of oxygen in cell. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cell systemize the antioxidative enzymes to control the oxidative stress. In this research, it is measured that the survival rate of cell by the typical isoflavonoid of daidzein or genistein, activity of antioxidative enzyme, and ROS level, in order to study the effect of isoflavonoid over the ROS production in cell and antioxidative system. As the similar action of the isoflavonoid with the estrogen is examined, women are encouraged to get bean. In view of this trend, it is very important to find out a combination medicine that lowers the oxidative stress caused by the daidzein in the ovarian cell. In the combined treatment of the typical antioxidant of vitamin C to oxidative stress which induced by daidzein recover the control level particularly lowering the ROS in cell by 30%. However, it made no effect in the combined treatment with genistein. Therefore, the research took the combination effect of daidzein with vitamin C in order to check it effect over the antioxidative system. In conclusion, it was disclosed that the oxidative stress caused by daidzein is related to the lowering activity of SOD, and the specific combination effect of daidzein with vitamin C is related to the recovery of SOD activity.

Ginsenoside Rg1 Improves In vitro-produced Embryo Quality by Increasing Glucose Uptake in Porcine Blastocysts

  • Kim, Seung-Hun;Choi, Kwang-Hwan;Lee, Dong-Kyung;Oh, Jong-Nam;Hwang, Jae Yeon;Park, Chi-Hun;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1095-1101
    • /
    • 2016
  • Ginsenoside Rg1 is a natural compound with various efficacies and functions. It has beneficial effects on aging, diabetes, and immunity, as well as antioxidant and proliferative functions. However, its effect on porcine embryo development remains unknown. We investigated the effect of ginsenoside Rg1 on the in vitro development of preimplantation porcine embryos after parthenogenetic activation in high-oxygen conditions. Ginsenoside treatment did not affect cleavage or blastocyst formation rates, but did increase the total cell number and reduced the rate of apoptosis. In addition, it had no effect on the expression of four apoptosis-related genes (Bcl-2 homologous antagonist/killer, B-cell lymphoma-extra large, Caspase 3, and tumor protein p53) or two metabolism-related genes (mechanistic target of rapamycin, carnitine palmitoyltransferase 1B), but increased the expression of Glucose transporter 1 (GLUT1), indicating that it may increase glucose uptake. In summary, treatment with the appropriate concentration of ginsenoside Rg1 ($20{\mu}g/mL$) can increase glucose uptake, thereby improving the quality of embryos grown in high-oxygen conditions.

Maintenance of Sperm Characteristics and In vitro Developmental Rate of Embryos against Oxidative Stress through Antioxidants in Pig

  • Jang, H.Y.;Kong, H.S.;Oh, J.D.;Park, B.K.;Yang, B.K.;Jeon, G.J.;Lee, H.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.340-345
    • /
    • 2008
  • Oxidative stress is one of the major causes of failure of in vitro storage of boar semen. Reactive oxygen species (ROS) are one of the important mediators of oxidative stress during in vitro storage of boar semen. Our study examined the effects of taurine on sperm characteristic and on in vitro developmental embryos during in vitro storage of boar semen for 7 days. Semen was randomly aliquoted into 3 centrifuge tubes and treated with different concentrations of taurine (25-100 mM). The characteristics of boar sperm were analyzed for motility by light microscopy, viability by using a Makler counting chamber and membrane integrity by a hypoosmotic swelling test (HOST). The percentages of motile spermatozoa in taurine groups after 5 days were significantly higher compared to the control. Sperm viability in the control was lower than in taurine groups after 7 days irrespective of different taurine concentration. In the hyoosmotic swelling test (HOST), significantly higher results were obtained in taurine groups after 3 days. Also, the developmental rates of IVM/IVF porcine embryos from semen treated with pyruvate and taurine were significantly increased when compared with the control (p<0.05). These results indicate that supplementation of taurine as an antioxidant in boar semen extender can improve the semen quality.