• Title/Summary/Keyword: oxygen introduction

Search Result 102, Processing Time 0.03 seconds

A Study on the Surface Oxidation Behavior of Cube-textured Nickel Substrate (양축 정렬된 니켈기판의 표면 산화반응 연구)

  • Ahn Ji-hyun;Kim Byeong-Joo;Kim Jae-Geun;Kim Ho-Jin;Hong Gye-Won;Lee Hee-Gyoun;Yoo Jai-Moo;Pradeep Halder
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • We investigated the surface oxidation behavior of cube-textured polycrystalline nickel at various oxidation conditions. Cube-textured NiO film was formed on a cube-textured polycrystalline nickel regardless of oxidation conditions but different growth behavior of NiO crystals was observed depending on the oxidation conditions. The introduction of water vapor into $O_2$ did not affect the texture evolution, but rough and porous microstructure was developed. Microstructure of NiO film tends to be denser as the oxygen partial pressure increases. It is interesting that (111) peak of theta - two theta diffraction pattern started to get stronger in air atmosphere and (111) plane became the major texture in the substrate oxidized in high purity argon gas. Small amount of high index crystallographic plane NiO peak crystal was observed when $N_{2}O$ was used as an oxidant while only (200) plane crystal was formed in dry $O_2$ atmosphere. Flat and smooth surface was changed into rough faceted one when ramping rate to oxidation temperature was faster. The grain size of NiO was decreased when the oxygen partial pressure was low. It was also observed that the modification of nickel surface suppressed the development of (200) texture.

  • PDF

Filler-Elastomer Interactions. 11. Influence of Atmospheric Pressure Plasma on Surface Properties of Nanoscaled Silicas (충전재-탄성체 상호작용. 11. 상압플라즈마 처리가 나노구조의 실리카 표면특성에 미치는 영향)

  • Park, Soo-Jin;Jin, Sung-Yeol;Kaang, Shin-Young
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.22-28
    • /
    • 2005
  • In this work, the effect of oxygen plasma treatment of nano-scaled silica on the mechanical interfacial properties and thermal stabilities of the silica/rubber composites was investigated. The surface properties of the silica were studied in X-ray photoelectron spectroscopy (XPS) and contact angles. And, their mechanical interfacial properties and thermal stabilities of the composites were characterized by tearing energy ($G_{IIIC}$) and thermogravimetric analysis (TGA), respectively. As a result, it was found that the introduction rate of oxygen-containing polar functional groups onto the silica surfaces was increased by increasing the plasma treatment time, resulting in improving the tearing energy. Also, the thermal stabilities of the composites were increased by increasing the treatment time. These results could be explained that the polar rubber, such as acrylonitrile butadiene rubber (NBR), showed relatively a high degree of interaction with oxygen-containing functional groups of the silica surfaces in a compounding system.

A Study on the Plasma Treatment Effect of Metal Fibersusing Micromechanical Technique (미세역학적 실험법에 의한 금속섬유의 플라즈마 처리효과에 관한 연구)

  • MiYeon Kwon;Seung Goo Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.122-129
    • /
    • 2022
  • In this study, the hydrophilicity of the metal fiber is improved by introducing an oxygen-containing functional group to the fiber surface after treatment of the metal fiber using the oxygen plasma treatment time as an experimental variable. For the surface modification of metal fibers, changes in surface properties before and after plasma treatment were observed using SEM and x-ray photoelectron spectroscopy (XPS). In order to observe the effect of the plasma treatment time on the surface of the metal fiber, the change in contact angle of the metal fiber with respect to a polar solvent and a non-polar solvent was measured. After calculating the change in surface free energy using the measured contact angle, the contact angle and the surface free energy for metal fibers before and after oxygen plasma treatment were compared, and the correlation with the adhesion work was also considered. The microdroplet specimens were prepared to investigate the effect of surface changes of these metal fibers on the improvement of shear strength at the interface when combined with other materials and the interfacial shear strength was measured, and the correlation with the adhesion work was also identified. Therefore, the oxygen plasma treatment of the metal fiber results in an increase in the physical surface area on the fiber surface and a change in contact angle and surface energy according to the introduction of the oxygen-containing functional group on the surface. This surface hydrophilization resulted in improving the interfacial shear strength with the polymer resin.

Field emission characteristics of carbon nanotubes under residual gases

  • Lee, Han-Sung;Jang, Eun-Soo;Goak, Jeung-Choon;Choi, Young-Chul;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1539-1540
    • /
    • 2008
  • The field degradation of carbon nanotube field emitters in diode emission at constant current was demonstrated to be highly dependent upon the presence of residual gases at partial pressures. Upon exposure to a higher pressure of oxygen containing gases, for example, $O_2$ and CO increased the voltage. Those gases give rise to chemical etching to CNTs emitters. On the contrary, $CH_4$ affected the emission properties in the opposite direction as decreasing the voltage which was probably attributed to the introduction of adsorbate tunneling states. The mixed gas may cause a combined effect of both adsorbate tunneling states and CNT etching.

  • PDF

RNAi-mediated reduction of xanthine dehydrogenase results in increased biomass of Arabidopsis seedlings

  • Nakagawa, Ayami;Sakamoto, Atsushi;Takahashi, Misa;Morikawa, Hiromichi
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.356-360
    • /
    • 2005
  • Xanthine dehydrogenase (XDH), a classic enzyme involved in purine catabolism, can catalyze the formation of redox-signaling reactive oxygen and nitrogen species such as superoxide and nitric oxide. We generated transgenic plants of Arabidopsis in which XDH was knocked out by introduction of hairpin RNA-expression vector. Expression analysis by reverse transcription-PCR and in-gel staining of XDH activity revealed that transgenic lines efficiently suppressedXDH expression at the transcriptional level, demonstrating that RNA interference was successfully induced. XDH-suppressed transgenic lines exhibitedincreased biomass production during the growth of seedlings.

  • PDF

A Study on the Electrode formation of an Organic EL Devices using the RF Plasma (RF 플라즈마를 이용한 유기 EL 소자의 전극형성에 관한 연구)

  • 이은학
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.228-235
    • /
    • 2004
  • In this thesis, it is designed efficient electrode formation on the organic luminescent device. ITO electrode is treated with $O_2$plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. It is realized efficiently electron injection to aluminum due to introduce the quantum well in cathode. In the case of device inserted the buffer layer by using the plasma poiymerization after $O_2$plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic ate made in the omitting layer. Compared with the devices without buffer layer, the turn-on voltage was lowered by 1.0(V) doc to the introduction of buffer layer Since the quantum well structure is formed in front of cathode to optimize the tunneling effect, there is improved the power efficiency more than two times.

STATUS OF MEMBRANE TECHNOLOGY IN KOREA

  • Im, Hoagy-K;Won, Jang-mook
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.3-7
    • /
    • 1999
  • Government efforts on membrane technology started in early 1980 with Membrane Development Program supported by the Ministry of Science and Technology. Several independent research projects on liquid separation, gas separation, hollow fiber producing program etc. were carried out during the 1980s. The RaCER was commissioned by MOCI for the general management of the project which had its aims in establishing the base for developing membranes, modules and systems for liquid separation in August 1993. More recently, in June 1995, a program for developing membranes for oxygen separation, nitrogen separation and hydrogen separation was initiated. This paper outlines the brief history of membrane technology development in Korea from the introduction of membrane filtration technology during the late 1960s to present.

  • PDF

Investigation of Temperature Effect on Electrode Reactions of Molten Carbonate Electrolysis Cells and Fuel Cells using Reactant Gas Addition Method

  • Samuel Koomson;Choong-Gon Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • The impact of temperature on electrode reactions in 100 cm2 molten carbonate cells operating as Fuel Cells (FC) and Electrolysis Cells (EC) was examined using the Reactant Gas Addition (RA) method across a temperature range of 823 to 973 K. The RA findings revealed that introduction of H2 and CO2, reduced the overpotential at Hydrogen Electrode (HE) in both the modes. However, no explicit temperature dependencies were observed. Conversely, adding O2 and CO2 to the Oxygen Electrode (OE) displayed considerable temperature dependencies in FC mode which can be attributed to increased gas solubility due to the electrolyte melting at higher temperatures. In EC mode, there was no observed temperature dependence for overpotential. Furthermore, the addition of O2 led to a decrease in overpotential, while CO2 addition resulted in an increased overpotential, primarily due to changes in the concentration of O2 species.

Effect of Substrate Temperature and O2 Introduction With ITO Deposition by Electron Beam Evaporation on Polycyclic Olefin Polymer (전자빔으로 폴리사이클릭 올레핀 기판에 ITO 증착시 기판온도 및 산소 도입의 영향)

  • Ahn, Hee-Jun;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.742-748
    • /
    • 2005
  • Transparent conductive indium-tin oxide (ITO) films are widely used as transparent electrodes for flat panel displays. Many of the ITO films for practical use have been prepared by magnetron sputtering, chemical vapor deposition, electron beam evaporation, etc. An oxide target composed of 10 wt% $SnO_2$ and 90 wt% $In_2O_3$ has been deposited onto polycyclic olefin polymer (POP) substrate by electron beam evaporation. POP has a higher glass transition temperature ($Tg=330^{\circ}C$) than other conventional polymers. In this study, the effects of substrate temperature and the $O_2$ introduction flow rate were investigated in terms of physical, electrical and optical properties of deposited ITO films. We investigated the effects of processing variables such as substrate temperature and the oxygen introduction flow rate. The best electrical and optical properties of deposited ITO films obtained from this study were electrical resistivity value of ${\rho}=1.78{\times}10^{-3}{\Omega}{\cdot}cm$ and optical transmittance of about 85% at 8 sccm (Standard Cubic Centimeter per Minute) $O_2$ introduction flow rate, $5{\AA}/sec$ deposition rate, $1000{\AA}$ deposited ITO thickness and $200^{\circ}C$ substrate temperature.

Infrared Spectroscopic Evidences for the Superconductivity of $La_2CuO_4$-related Compounds: A Superconductivity Probe

  • Park, Jeong Cheol;Jo, Seon Woog;Jeong, Jong Hak;Jeong, Gi Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1041-1043
    • /
    • 2000
  • We present the effects of temperature (between 10 K and 298 K) and of hole concentration on the frequency and intensity of characteristic phonons in polycrystalline $La_2CuO_4-related$ compounds using FT-IR spectros-copy. The influences of the concentration of carrier doped on the phonon modes are prominent in the IR spectra of $La_2CuO_4-related$ compounds. For $La_2-xSrxCuO_4({\chi}=$ 0.00, 0.03, 0.07, 0.10, and 0.15) and electrochemically (or chemically) oxidized $La_2CuO_4$, the intensities of the transverse oxygen mode around 680cm $-^1$ which cor-responds mainly to Cu-O(1) stretching vibration in the basal plane of CuO6 octahedron, are decreased and dis-appeared depending on the Sr-substitution rate and the amount of excess oxygen, while the longitudinal oxygen mode around 510 cm $-^1$ corresponding to the Cu-O(2) stretching in the basal plane of CuO6 octahedron are near-ly invariable. In particular, after two cycles of cooling-heating between 10 K and 298 K for these sample, the phonons around 680 cm $-^1$ are blue shif 13-15 cm $-^1$, while the phonons around 510 cm $-^1$ are nearly constant. The introduction of the charge carrier by doping would give rise to the small contraction of CuO6 oc-tahedron as Cu $^3+$ requires a smaller site than Cu $^2+$, which results in the shortening of the Cu-O(1) bond length and Cu-O(2) bond length with the increased La-O(2) bond length. These results in the frequency shift of the characteristic phonons. The IR spectra of $La_2Li0.5Cu0.5O_4$ which exhibits an insulator behavior despite the $Cu^3+$ of nearly 100%, corroborate our IR interpretations. The mode around 710 cm $-^1$ corresponding to Cu-O(1) stretching vibration is still strongly remained even at low temperature (10 K). Thus, we conclude that the con-duction electrons formed within $CuO_2$ planes of $La_2CuO_4-related$ superconductors screen more effectively the transverse oxygen breathing mode around 680 $cm-^1$ depending on the concentration of the doped charge carrier in $La_2CuO_4-related$ compounds, which might use as a superconductivity probe.