• Title/Summary/Keyword: oxygen fugacity

Search Result 35, Processing Time 0.023 seconds

The Geochemical and Zircon Trace Element Characteristics of A-type Granitoids in Boziguoer, Baicheng County, Xinjiang (중국 신장 위그루자치구 바이청현 보즈구얼의 A형화강암류의 지화학 및 지르콘 미량원소특징에 대한 연구)

  • Yin, Jingwu;Liu, Chunhua;Park, Jung Hyun;Shao, Xingkun;Yang, Haitao;Xu, Haiming;Wang, Jun
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.179-198
    • /
    • 2013
  • The Boziguoer A-type granitoids in Baicheng County, Xinjiang, belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks. The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite, an aegirine or arfvedsonite alkali feldspar granite, and a biotite alkali feldspar syenite. The major rock-forming minerals are albite, K-feldspar, quartz, arfvedsonite, aegirine, and siderophyllite. The accessory minerals are mainly zircon, pyrochlore, thorite, fluorite, monazite, bastnaesite, xenotime, and astrophyllite. The chemical composition of the alkaline granitoids show that $SiO_2$ varies from 64.55% to 72.29% with a mean value of 67.32%, $Na_2O+K_2O$ is high (9.85~11.87%) with a mean of 11.14%, $K_2O$ is 2.39%~5.47% (mean = 4.73%), the $K_2O/Na_2O$ ratios are 0.31~0.96, $Al_2O_3$ ranges from 12.58% to 15.44%, and total $FeO^T$ is between 2.35% and 5.65%. CaO, MgO, MnO, and $TiO_2$ are low. The REE content is high and the total ${\sum}REE$ is $(263{\sim}1219){\times}10^{-6}$ (mean = $776{\times}10^{-6}$), showing LREE enrichment HREE depletion with strong negative Eu anomalies. In addition, the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type. The Zr content is $(113{\sim}1246){\times}10^{-6}$ (mean = $594{\times}10^{-6}$), Zr+Nb+Ce+Y is between $(478{\sim}2203){\times}10^{-6}$ with a mean of $1362{\times}10^{-6}$. Furthermore, the alkaline granitoids have high HFSE (Ga, Nb, Ta, Zr, and Hf) content and low LILE (Ba, K, and Sr) content. The Nb/Ta ratio varies from 7.23 to 32.59 (mean = 16.59) and the Zr/Hf ratio is 16.69~58.04 (mean = 36.80). The zircons are depleted in LREE and enriched in HREE. The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly. The Boziguoer A-type granitoids share similar features with A1-type granites. The average temperature of the granitic magma was estimated at $832{\sim}839^{\circ}C$. The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature, anhydrous, and low oxygen fugacity conditions.

Emplacement Depth of Cretaceous Granites in Kyeongsang Basin, E Korea (경상분지내 백악기 화강암류의 정치 깊이에 관한 연구)

  • Ko, Jeong-Seon;Yun, Sung-Hyo;Ahn, Ji-Young;Kim, Hyang-Soo;Choi, You-Jong
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 2000
  • In Kyeongsang basin, there were very dynamic magmatic activities, resulting to form volcanic and plutonic rocks. A plutonic recycle appeared in this region. Presumption of the pressure for hornblende-bearing granitic rock among the plutonic rocks, can support important informations for the emplacement depth of Cretaceous Bulgugsa granites in Kyeongsang basin. $Al^T$(Al total) contents of hornblende is related to the pressure, oxygen fugacity, and compositions of other minerals having the solid solution. So we apply the $Al^T$ content of hornblende to several empirical and experimental geobarometer systems to presume the pressure and to determine the emplacement depth of Cretaceous Bulgugsa granites in Kyeongsang basin from the inferred pressure. With the result that we applied the $Al^T$ contents of hornblende to the various geobarometers, there was a positive relationship between the pressure and $Al^T$. The minimum pressure value ranges from 0.73 to 1.70kbar in Kyeongju and the maximum value from 2.02 to 3.16kbar in Kimhae. And then the tectonic setting in Kyeongsang basin has no relation to the emplacement depth of Cretaceous granites and means variations with the movement of vertical component in each area. As we suppose that the density of earth's crust is $2.8g/cm^3$, the average values of the emplacement depth ranges in each area range from 2.6 to 11.4km. These data confirm the previous idea about the emplacement depth of Cretaceous granites in Kyeongsang basin, and these geobarometers using the $Al^T$ contents of hornblende is available though they have much limits. Therefore Cretaceous Bulgugsa granites in Kyeongsang basin was the shallow depth intrusive rut and the exposed granites was the shallow depth crust.

  • PDF

Skarn Formation in Metamorphic Rocks of the Chungju Mine Area (충주광산 지역 계명산층의 텅스텐 스카른화작용)

  • Kim, Gun-Soo;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.185-197
    • /
    • 1995
  • Tungsten skarns in the Chungju mine which consists mainly of strata-bound type iron ore deposits are found in the vicinity of the contact between the age-unknown Kyemeongsan Formation and granitic rock intrusions of Mesozoic age($134{\pm}2Ma$). Tungsten skarns were formed extensively from alumina and silica-rich schistose rocks by the introduction of calcium and iron from hydrothermal solution. The skarns comprise a metasomatic column and are subdivided into four facies; garnet facies, wollastonite facies, epidote facies and chlorite facies. The skarn process in time-evolutional trend can be divided broadly into the four facies in terms of the paragenetic sequence of calc-silicates and their chemical composition. Skarn and ore minerals were formed in the following sequence; (1) garnet facies, adjacent to biotite granite, containing mainly garnet(>Ad96) and magnetite, (2) wollastonite facies containing mainly wollastonite and garnet(Ad95~60), (3) epidote facies, containing mainly epidote(Ps35~31), quartz, andradite-grossular(Ad63~50), and scheelite, (4) chlorite facies, adjacent to and replacing schist, containing mainly chrolite, muscovite, quartz, calcite, epidote(Ps31~25), hematite and sulfides. The mineral assemblage and mineral compositions. suggest that the chemical potentials of Ca and Fe increased toward the granitic rock, and the component Al, Mg, K, and Si decreased from the host rock to granitic rock. The homogenization temperature and salinity of fluid inclusion in scheelite, quartz and epidote of epidote facies skarn is $300-400^{\circ}C$ and 3-8wt.% eqiv. NaCl, respectively. ${\delta}^{34}S$ values of pyrite and galena associated with chlorite facies skarn is $9.13{\sim}9.51%_{\circ}$ and $5.85{\sim}5.96%_{\circ}$, respectively. The temperature obtained from isotopic com· position of coexisting pyrite-galena is $283{\pm}20^{\circ}C$. Mineral assemblages and fluid inclusion data indicate that skarn formed at low $X_{CO_2}$, approximately 0.01. Temperature of the skarn mineralization are estimated to be in the range of $400^{\circ}C$ to $260^{\circ}C$ and pressure to be 0.5 kbar. The oxygen fugacity($fo_2$) of the skarn mineralization decreased with time. The early skarn facies would have formed at log $fo_2$ values of about -25 to -27, and late skarn facies would have formed at log $fo_2$ values of -28 to -30. The estimated physicochemical condition during skarn formation suggests that the principal causes of scheelite mineralization are reduction of the ore·forming fluid and a decrease in temperature.

  • PDF

Ore minerals and Genetic Environments from the Baekun Gold-silver Deposit, Republic of Korea (백운 금-은광상에서 산출되는 광석광물과 생성환경)

  • Yoo, Bong-Chul;Lee, Hyun-Koo;Kim, Ki-Jung
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.9-25
    • /
    • 2006
  • Baekun gold-silver deposit is an epithermal quartz vein that is filling the fault zone within Triassic or Jurassic foliated granodiorite. Mineralization is associated with fault-breccia zones and can be divided into two stages. Stage I which can be subdivided early and late depositional stages is main ore mineralization and stage II is barren. Early stage I is associated with wallrock alteration and the formation of sulfides such as arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, stannite, galena. Late stage I is characterized by Au-Ag mineralization such as electrum, Ag-bearing tetrahedrite, stephanite, boulangerite, pyrargrite, argentite, schirmerite, native silver, Ag-Te-Sn-S system, Ag-Cu-S system, pyrite, chalcopyrite and galena. Fluid inclusion data indicate that homogenization temperatures and salinity of stage I range from $171.6^{\circ}C\;to\;360.8^{\circ}C\;and\;from\;0.5\;to\;10.2\;wt.\%\;eq.$ NaCl, respectively. It suggest that ore forming fluids were cooled and diluted with the mixing of meteoric water. Also, Temperature (early stage I: $236\~>380^{\circ}C,\;$ late stage $I: <197\~272^{\circ}C$) and sulfur fugacity (early stage $I:\;10^{-7.8}$ a atm., late stage I: $10^{-14.2}\~10^{-l6}atm$.) deduced mineral assemblages from stage 1 decrease with paragenetic sequence. Sulfur ($2.4\~6.1\%_{\circ}$(early stage $I=3.4\~5.3\%_{\circ},\;late\;stage\;I=2.4\~6.1\%_{\circ}$)), oxygen ($4.5\~8.8\%_{\circ}$(quartz: early stage $I=6.3\~8.8\%_{\circ}$, late stage $I=4.5\~5.6\%_{\circ}$)), hydrogen ($-96\~-70\%_{\circ}$ (quartz: early stage $I=-96\~-70\%_{\circ},\;late\;stage\;f=-78\~-74\%_{\circ},\;calcite:\;late\;stage\;I=-87\~-76\%_{\circ}$)) and carbon ($-6.8\~-4.6\%_{\circ}$ (calcite: late stage I)) isotope compositions indicated that hydrothermal fluids may be magmaticorigin with some degree of mixing of another meteoric water for paragenetic time.

Temporal Variations of Ore Mineralogy and Sulfur Isotope Data from the Boguk Cobalt Mine, Korea: Implication for Genesis and Geochemistry of Co-bearing Hydrothermal System (보국 코발트 광상의 산출 광물종 및 황동위원소 조성의 시간적 변화: 함코발트 열수계의 성인과 지화학적 특성 고찰)

  • Yun, Seong-Taek;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.289-301
    • /
    • 1997
  • The Boguk cobalt mine is located within the Cretaceous Gyeongsang Sedimentary Basin. Major ore minerals including cobalt-bearing minerals (loellingite, cobaltite, and glaucodot) and Co-bearing arsenopyrite occur together with base-metal sulfides (pyrrhotite, chalcopyrite, pyrite, sphalerite, etc.) and minor amounts of oxides (magnetite and hematite) within fracture-filling $quartz{\pm}actinolite{\pm}carbonate$ veins. These veins are developed within an epicrustal micrographic granite stock which intrudes the Konchonri Formation (mainly of shale). Radiometric date of the granite (85.98 Ma) indicates a Late Cretaceous age for granite emplacement and associated cobalt mineralization. The vein mineralogy is relatively complex and changes with time: cobalt-bearing minerals with actinolite, carbonates, and quartz gangues (stages I and II) ${\rightarrow}$ base-metal sulfides, gold, and Fe oxides with quartz gangues (stage III) ${\rightarrow}$ barren carbonates (stages IV and V). The common occurrence of high-temperature minerals (cobalt-bearing minerals, molybdenite and actinolite) with low-temperature minerals (base-metal sulfides, gold and carbonates) in veins indicates a xenothermal condition of the hydrothermal mineralization. High enrichment of Co in the granite (avg. 50.90 ppm) indicates the magmatic hydrothermal derivation of cobalt from this cooling granite stock, whereas higher amounts of Cu and Zn in the Konchonri Formation shale suggest their derivations largely from shale. The decrease in temperature of hydrothermal fluids with a concomitant increase in fugacity of oxygen with time (for cobalt deposition in stages I and II, $T=560^{\circ}C-390^{\circ}C$ and log $fO_2=$ >-32.7 to -30.7 atm at $350^{\circ}C$; for base-metal sulfide deposition in stage III, $T=380^{\circ}-345^{\circ}C$ and log $fO_2={\geq}-30.7$ atm at $350^{\circ}C$) indicates a transition of the hydrothermal system from a magmatic-water domination toward a less-evolved meteoric-water domination. Sulfur isotope data of stage II sulfide minerals evidence that early, Co-bearing hydrothermal fluids derived originally from an igneous source with a ${\delta}^{34}S_{{\Sigma}S}$ value near 3 to 5‰. The remarkable increase in ${\delta}^{34}S_{H2S}$ values of hydrothermal fluids with time from cobalt deposition in stage II (3-5‰) to base-metal sulfide deposition in stage III (up to about 20‰) also indicates the change of the hydrothermal system toward the meteoric water domination, which resulted in the leaching-out and concentration of isotopically heavier sulfur (sedimentary sulfates), base metals (Cu, Zn, etc.) and gold from surrounding sedimentary rocks during the huge, meteoric water circulation. We suggest that without the formation of the later, meteoric water circulation extensively through surrounding sedimentary rocks the Boguk cobalt deposits would be simple veins only with actinolite + quartz + cobalt-bearing minerals. Furthermore, the formation of the meteoric water circulation after the culmination of a magmatic hydrothermal system resulted in the common occurrence of high-temperature minerals with later, lower-temperature minerals, resulting in a xenothermal feature of the mineralization.

  • PDF