• Title/Summary/Keyword: oxygen and moisture

Search Result 237, Processing Time 0.038 seconds

Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

  • Kim, Eunjong;Lee, Dong-Hyun;Won, Seunggun;Ahn, Heekwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.753-758
    • /
    • 2016
  • Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg $O_2/g$ VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

Germinability of Film-Coated Snap Bean Seed as Affected by Oxygen Diffusion Rate under Different Soil Moisture Contents

  • Kim, Seok-Hyeon;Alan G. Taylor
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • The film coated snap bean (Phaseolus vulgaris) seeds with five different coating materials treated with 3% increase in seed weight were planted at sandy loam soil controlled moisture content of 18, 19, 20 and 21 %. The oxygen diffusion rate (ODR) was calculated from the different moisture content soil. The number of normal seedlings, seedling vigor, and seedling capability in field (seed vigor x dry matter weight) were observed at 9 days after planting and compared to the changes of ODR. The germination rate and ODR were sharply decreased simultaneously in the seeds planted at 21 % soil moisture content. Seedling emergence did not occur at all as the soil moisture content increased above 22 %. Hence this value should be considered as the threshold of soil moisture content for seedling emergence. An ODR value under 20% did not influence the percent emergence significantly. The certain difference observing in the emergence at the same ODR was not related clearly to the condition of soil. So it can be assumed that the limit of soil moisture content for the emergence of snap bean was approximately 20%. The value of 18% soil moisture content may be considered as the optimum for snap bean emergence. There was close relationship between the mean value of ODR in different soil moisture contents and the emergence. The germination rates of the seeds coated with the different materials were quite different when the seeds were planted at 21 % soil moisture. Dry weight of the seedlings from film coated seeds was decreased slightly, but the germination rates were not much different from the non-treated control under relatively higher soil moisture content (21 %). Major factor lowering emergence rate was oxygen stress while film coating act as a minor constraint for snap bean sown in excess soil moisture condition.

Effects of Packaging Materials on the Physicochemical Characteristics of Seasoned Anchovies During Storage (포장재가 멸치조미가공품의 저장 중 이화학적 품질 특성에 미치는 영향)

  • Lee, Eui-Seok;Lee, Hyong-Ju;Bae, Jae-Seok;Kim, Yong-Kuk;Lee, Jong-Hyeouk;Hong, Soon-Taek
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.461-469
    • /
    • 2013
  • This research is performed to investigate the changes in the physicochemical properties and microbial growths of seasoned anchovies with various packaging materials (PET/CPP : polyethylene terephthalate/cast polypropylene, PET/EVOH : polyethylene terephthalate/ethylene-vinyl alcohol, PET/AL/LDPE: polyethylene terephthalate/aluminum/low density polyethylene), which are stored at various temperatures (25, 35, $45^{\circ}C$) for 60 days. Generally, it is being observed that changes in physicochemical properties (i.e., moisture content, color, brown intensity, TBA value, TMA, VBN etc) of seasoned anchovies are significant when stored at higher temperatures. Particularly, the packaging materials are found to influence substantially on the physicochemical properties of seasoned anchovies. With packaging materials of high oxygen transmission rates and moisture vapor transmission rates (i.e., PET/CPP), the changes in physicochemical properties of seasoned anchovies are significant, while being low with low oxygen transmission rates and low moisture vapor transmission rates (i.e., PET/EVOH). In addition, results of microbial growths in seasoned anchovies show that significant increases in total aerobic bacteria counts (about 100-fold after 60 day of storage) are observed in samples with packaging materials of high oxygen transmission rates and moisture vapor transmission rates (i.e, PET/CPP), while with only small increases for samples of low oxygen transmission rates and low moisture vapor transmission rates (i.e., PET/EVOH). Based on the changes in the physicochemical properties and results of microbial growths, it is being concluded that PET/EVOH film is suitable for the packaging of seasoned anchovies.

Effect of Oxygen and Moisture on Stabilization of Municipal Solid Wastes in Landfill (폐기물매립지에 있어서 산소와 수분이 매립폐기물의 안정화에 미치는 영향)

  • Kim, Hye-Jin;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.139-150
    • /
    • 2006
  • Landfilling is one of the most widely used methods for the final disposal of solid wastes. Landfilled wastes are degraded by residing microorganisms and the microbial degradation is affected by many factors such as moisture, oxygen, pH, alkalinity, sulphate, nutrient, temperature, and so on. Especially among these factor, oxygen and moisture within aerobic landfill play a major role in microbial degradation. In this study, 1) the effects of oxygen on the velocity of waste degradation and 2) the effect of moisture on the degradation of municipal solids waste (MSW) in aerobic condition were investigated. It was found that the BOD and CODcr concentration from the leachate of aerobic lysimeters dropped faster by 80 days after the start of the test compared to those from the anaerobic lysimeters. To see the effect of moisture, four aerobic lysimeters filled with MSW and four different levels of moisture (20, 30, 40, and 50%) were installed. From this test, higher moisture in MSW produced higher $CO_2$ concentration, meaning moisture was effective for the microbial degradation. thus, we concluded that higher moisture level in the aerobic landfill might help early-stabilization microbial degradation.

  • PDF

Permeabilities of Korean Earthenware Containers and Their Potential for Packaging Fresh Produce

  • Seo, Gyeong-Hee;Chung, Sun-Kyung;An, Duck-Soon;Lee, Dong-Sun
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.82-88
    • /
    • 2005
  • Ethnic Korean onggi earthenwares were fabricated using different clay formulations and glazing treatments. Their permeability properties against oxygen, carbon dioxide, and moisture were measured at $20^{\circ}C$ and examined from the aspect of food preservation. Onggi walls consisted of micropores that offered higher gas and moisture permeation rates when compared with other food packaging materials. Earthenware walls were unique in having $CO_2/O_2$ permeability ratios of 0.60-1.00. Gas and moisture permeabilities were lower, with wall structure having lower porosity and surface glazing. Results revealed onggi jar packages of grape fruits could attain wide range of $O_2$ and $CO_2$ concentrations. Onggi containers present good opportunity to obtain optimum packaging conditions for respiring or ripening products, depending on commodity type.

NO Reduction and Oxidation over PAN based-ACF

  • Kim, Je-Young;Lee, Jong-Gyu;Hong, Ik-Pyo
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2000
  • Catalytic reduction and oxidation of NO over polyacrylonitrile based activated carbon fibers (PAN-ACF) under various conditions were carried out to develop removal process of NO from the flue gas. The effect of temperature, oxygen concentration and the moisture content for the reduction of NO with ammonia as a reducing agent was investigated. The reduction of NO increased with the oxygen concentration, but decreased with the increased temperature. The moisture content in the flue gas affects the reduction of NO as the inhibition of the adsorption of the other components and the reaction on the surface of ACE For the oxidation of NO to $NO_2$ over PAN-ACF without using a reducing gas, it showed the temperature and the oxygen concentration of the flue gas are the important factors for the NO conversion in which the conversion increased with oxygen concentration and decreased with the temperature increase and might be the alternative option for the selective catalytic reduction process.

  • PDF

Preliminary Study of Bioremediation in Diesel Contaminated Soil (디젤 오염토양의 생물학적 복원에 관한 기초연구)

  • 김선영;권수열;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.167-170
    • /
    • 2000
  • The purpose of study is to evaluate the effects of physical parameters on diesel biodegradation in diesel contaminated soil. The parameters applied are concentration, temperature, moisture contents, electron acceptor(O$_2$). The results of this study showed that diesel were degraded faster at high temperature and moisture contents than at low temperature and moisture content. However concentration effect study indicates that diesel were more faster degraded at low concentration than at high concentration. The results of electron acceptor test showed concentration of oxygen did not affect the biodegradation rate of diesel in oxygen condition(10, 20%) of this study.

  • PDF

Composting High Moisture Materials : Bio-Drying Livestock Manure in a Sequentially Fed Reactor

  • Lee, J.H.;Park, H.L.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.701-710
    • /
    • 1996
  • Composting has gained rapid acceptance as a method of recyling relatively dry organic materials such as leaves and brush and , when alternative disposal costs are high, even moist materials such as grass clippings and dewatered sewage sludges. However, as moisture contents rise above 60% , the need for a dry bulking amendment increase the costs of composting , both by direct purchases of amendment and though increased reactor capacity and materials handling requirements. High moisture materials also present increased risks of anaerobic odor formation through reduced oxygen transport (Miller , 1991) . These costs and operational challengers often constrain the opportunities to compost high moisture materials such as agricultural manures. During the last several decades economies of scale in livestock production have been increasing livestock densities and creating manure management challenges throughout the world. This issue is particularly pressing in Korea, where livestock arms typically manage little or no cropland, and the nutrients and boichemical oxygen demand in manure pose a serious threat to water quality. Composting has recently become popular as a means of recycling manure into products for sale off the farm, but bulking amendments (usually sawdust) are expensive designed to minimize bulking agent requirements by using the energy liberated by decompostion. In this context the composting reactor is used as a biological dryer, allowing the repeated use of bulking amendment with several batches of manure.

  • PDF

Study on applicability of RDF in Municipal Waste Landfill Site (생활폐기물매립장에서의 RDF 적응가능성에 대한 연구)

  • Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1181-1187
    • /
    • 2009
  • Results for application of RDF(Refuse Derived Fuel) to selected wastes in metropolitan and small and medium cities are as follows. The physical characteristics of waste are paper, plastic, food waste, and so on. The proximate analysis in P city showed 20.2% of moisture, 71% of combustible material, and 8.8% of ash on annual average. That in G city showed 31.6% of moisture, 59.5% of combustible material, and 8.9% of ash. Ultimate analysis in P city showed 52.04% of carbon, 7.02% of hydrogen, 28.80% of oxygen, 0.66% of nitrogen, and 0.09% of sulfur. Heating value was 3,363 kcal/kg. Ultimate analysis in G city showed 50.85% of carbon, 6.56% of hydrogen, 29.86% of oxygen, 0.79% of nitrogen, and 0.12% of sulfur. Heating value in the G city was somewhat lower than that in the P city with 2,632 kcal/kg. Thus, application of RDF in metropolitan city was more effective than that in small and medium cities. Heating value in mixture for the P city was lower than that in waste of the volume rate waste charge system alone by 143 kcal/kg. In proximate analysis, moisture, and combustible material were likely to be more adequate to RDF.

($LEXAN^{(R)}$ for Flexible OLED Display Technology

  • Yan, Min;Ezawa, Hiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.614-615
    • /
    • 2005
  • The use of plastic substrates enables new applications, such as flexible display devices, and other flexible electronic devices, using low cost, roll-to-roll (R2R) fabrication technologies. One of the limitations of polymeric substrate in these applications is that oxygen and moisture rapidly diffuse through the material and subsequently degrade the electro-optical devices. GE Global Research (GEGR) has developed a plastic substrate technology comprised of a superior high-heat polycarbonate ($LEXAN^{(R)}$) substrate film and a unique transparent coating package that provides the ultrahigh barrier (UHB) to moisture and oxygen,chemical resistance to solvents used in device fabrications, and a high performance transparent conductor. This article describes the coating solutions for polycarbonate ($LEXAN^{(R)}$) films and its compatibility with OLED device fabrication processes.

  • PDF