• Title/Summary/Keyword: oxidizing solid

Search Result 54, Processing Time 0.043 seconds

A Study on Combustion Property of Oxidizing Solid-Combustible Support Mixtures (산화성고체-조연제 혼합물의 연소성에 관한 연구)

  • 송영호;강민호;정국삼
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.71-75
    • /
    • 2003
  • The purpose of this study was to review the factors that influence on the combustion experiment of oxidizing solid such as mixing ratio of oxidizing solid and combustible support content ratio of oxidizing solid, ambient temperature, maturing time, combustible support, and additives. The 30g mixing compound samples of oxidizing solid and combustible support were tested with different mixing ratios. As a result, the Infest burning time was measured when mixing ratio was 4 (oxidizing solid) : 1 (combustible support). And the burning time was decreasing as the ambient temperature and maturing time were increasing.

Risk Evaluation of Oxidizing Substances by Burning Test Method (연소시험법에 의한 산화성물질의 위험성 평가)

  • 정국삼
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.3
    • /
    • pp.73-82
    • /
    • 1992
  • This paper was concerned with the risk evaluation of oxidizing substances by burning test method. The samples were prepared the heaped cone-shaped mixtures of solid oxidizing sub-stance with sawdust, and ignition of the sample was made on contact with heating wire inside the combution chamber that the temperature and humidity of atmosphere can be kept at $25^{\circ}C$ and 60% respectively. Accordingly, it were measured the combustivity effect of mixing ratio and amount of sample weight on the burning rate. As a result of burning test of these samples, it could be noticed that the case when the sawdust has so and 30 wt.% in the mixing ratio shows effective combustivity, and as the amount of sample weight was increasing, It showed more rapid burning time. So the average burning time could be obtained by considering the weighting factors to the parameters of the mixing ratio and the amount of sample weight. Finally, it was compared with the effects of cation and anion of oxidizing substances and also applied analytically to the classification and evaluation of oxidizing sub-stances as dangerous goods.

  • PDF

Chemical Risk Assessment of Oxidizing Substances (산화성물질의 화학적 위험성 평가)

  • 정국삼
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.35-46
    • /
    • 1993
  • This paper was concerned with the risk assessment about oxidizing substances as dangerous goods by burning test method. The sample. which was formed with the heaped cone-shape. was composed of solid oxidant and sawdust. The burning time of each sample was measured under the following various conditions circumstance temperature. mixing ratio of oxidizing substance and sawdust. particle size of sawdust and kinds of sawdust. As a results. the effective combustibility was gained when the sawdust content was 20∼30 wt.% in the sample and the lauan with -30+50 mesh was used. But. although the circumstance temperature increased. burning efficiency of the samples wet$.$e not affect by it. Finally. the average burning times were obtained by considering the weighting factors related on the mixing ratio and the circumstance temperature. And then. it were compared with the combustion risk level and the effects of cation and anion of oxidizing substances as dangerous goods.

  • PDF

Engineering Properties of Non Shrinkage Grouter According to Replacement Ratio of Rapidly Cooled Electric Arc Furnace Oxidizing Slag (급냉 전기로 산화슬래그 대체율에 따른 무수축 그라우터의 공학적 특성)

  • Sung, JongHyun;Sun, Jung Soo;Hong, Sung;Kim, JinMan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.318-320
    • /
    • 2013
  • The spherical bead manufactured by rapidly cooling process shows high density of 3.64g/㎤, high unit volume weight of 2.6kg/l, and high solid volume of 71%. When it applies to the grouter, it is possible to obtain even high fluidity with only a small amount. This study, focusing the grouter using a rapidly-cooled electric arc furnace oxidizing slag(RC-EAFS), deals with the properties of flow and setting time in fresh state, compressive strength and length variation at 1, 3, 7 and 28 curing day in hardened state. As the results, even though the grouter with RC-EAFS shows comparative low strength, it will be possible to development the competitive product due to the properties of increasing flow and low cost.

  • PDF

The Influences of Water Vapor/Hydrogen Ratio, Gas-Flow Rate and Antimony on the Surface Oxidation of Trip Steels

  • Kwon, Youjong;Zhu, Jingxi;Sohn, Il-Ryong;Sridhar, Seetharaman
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.189-193
    • /
    • 2011
  • In the current paper, we are reporting the results from an investigation of the surface and sub-surface oxidation of a TRIP steel containing 2 wt.% Mn and 0.5 wt.% Al with and without 0.03 wt.% Sb. The oxidizing conditions in the gas were successively varied in terms of the linear gas flow-rate and dew-point, from conditions were gas-phase mass transport limited conditions prevailed, to those were solid state processes became the rate determining conditions. It was found, that at sufficient low oxidizing conditions (defined as flow-rate/dew-point), the metal surfaces were clear of any external oxides, and as the oxidizing conditions were increased, Mn- and Si- oxide nodules formed along with magnetite. As the oxidizing conditions were increased further, a dense magnetite layer was present. The limits of the various regions were experimentally quantified and a proposed hypothesis for their occurrences is presented. No obvious effect of Sb was noted in this micro-structural research of the oxides that results from the various conditions investigated in this study.

A Study of Fuel-rich Solid Propellant Characteristic for Boron-bead Particle Size (금속연료인 과립화붕소의 입도에 따른 연료과농 고체 추진제 특성 연구)

  • Won, Jongung;Choi, Sunghan;Lee, Wonbok;Kim, Junhyung;Hwang, Gabsung;Park, Bocksun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.12-18
    • /
    • 2014
  • A study of gas generator Fuel-Rich propellant for air-breathing propulsion system was performed in this paper. General solid propellant comprises a mean of 60% or more oxidizing agents. but, to develop the fuel-rich solid propellant increased the content of the metal fuel and reduced the content of the oxidizing agents by approximately 30%. Very high amount of heat per volume of fuel into the metal having the Boron was used. Amorphous Boron Powder was applied to propellant as beads type and it allowed to design more amount of metal fuel in the fuel-rich propellant. And the Combustion characteristics and properties of fuel-rich solid propellant according to the Boron-bead sizes were confirmed.

Phase analysis of simulated nuclear fuel debris synthesized using UO2, Zr, and stainless steel and leaching behavior of the fission products and matrix elements

  • Ryutaro Tonna;Takayuki Sasaki;Yuji Kodama;Taishi Kobayashi;Daisuke Akiyama;Akira Kirishima;Nobuaki Sato;Yuta Kumagai;Ryoji Kusaka;Masayuki Watanabe
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1300-1309
    • /
    • 2023
  • Simulated debris was synthesized using UO2, Zr, and stainless steel and a heat treatment method under inert or oxidizing conditions. The primary U solid phase of the debris synthesized at 1473 K under inert conditions was UO2, whereas a (U, Zr)O2 solid solution formed at 1873 K. Under oxidizing conditions, a mixture of U3O8 and (Fe, Cr)UO4 phases formed at 1473 K, whereas a (U, Zr)O2+x solid solution formed at 1873 K. The leaching behavior of the fission products from the simulated debris was evaluated using two methods: the irradiation method, for which fission products were produced via neutron irradiation, and the doping method, for which trace amounts of non-radioactive elements were doped into the debris. The dissolution behavior of U depended on the properties of the debris and aqueous solution for immersion. Cs, Sr, and Ba leached out regardless of the primary solid phases. The leaching of high-valence Eu and Ru ions was suppressed, possibly owing to their solid-solution reaction with or incorporation into the uranium compounds of the simulated debris.

Community Analysis of Nitrite-Oxidizing Bacteria in Lab-Scale Wastewater Treatment System (폐수처리장치에서의 아질산염 산화 세균 군집 분석)

  • Jeong, Soon-Jae;Lee, Sang-Ill;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • Nitrogen is one of the major pollutants that should be removed by wastewater treatment systems. Biological nitrogen removal (BNR) is a key technology in advanced wastewater treatment systems operated by bacterial populations. Nitrification is the first step of microbiological processes in BNR system. Ammonia is oxidized to nitrite by ammonia-oxidizing bacteria (AOB) and then nitrite is subsequently oxidized to nitrate by nitrite-oxidizing bacteria (NOB). The diversity of NOB in nitrification reactors of 3 BNR systems, Edited biological aerated filter system, Nutrient removal laboratory system, and the Rumination type sequencing batch reactor system, was investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Cluster analysis of T-RF profiles showed that communities of Nitrobacter group in each system were different depending upon the process of systems. However, the clusters of Nitrospira group were divided by the habitat of aqueous and solid samples.

Mussel-Inspired, Fast Surface Modification of Solid Substrates

  • Hong, Sang-Hyeon;Kang, Sung-Min;Lee, Hae-Shin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.201-201
    • /
    • 2011
  • Recently, mussel-inspired surface modification, called polydopamine coating has been extensively implemented to many areas, due to its material versatility and ease to use. In particular, incubation of substrates in an alkaline dopamine solution resulted in self-polymerization of dopamine and modified variety of material surfaces, including noble metals, metal oxides, ceramics, and synthetic polymers. However, the polydopamine coating has a drawback to practical use; it takes more than 12 hrs to introduce sufficient polydopamine layers to solid substrates. Here, we investigated the rate-enhanced polydopamine coating by varying reaction conditions: pH, concentration, and the addition of the oxidizing agent. As a result, the optimum condition for fast polydopamine coating was found, and solid substrates were efficiently coated with polydopamine layers in just few minutes using the condition. The polydopamine-modified surface was characterized by XPS and contact angle goniometry, and the biocompatibility of the modified surface was also proved by cell attachment test.

  • PDF