• Title/Summary/Keyword: oxidizer

Search Result 614, Processing Time 0.044 seconds

Preliminary Study of Gas Generator After Burning Cycle Engine for Upper Stages (상단용 가스발생기 후연소 싸이클 엔진 기초연구)

  • Moon, In-Sang;Shin, Ji-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.159-162
    • /
    • 2008
  • In this study, various cycles of liquid rocket engines were surveyed and specifically gas generator after burning cycle was investigated for upper stage motors. The engines for the upper stage can be categorized into three group based on the cycles and propellants at the diagram. Kerosene engines which adapt the gas generator after burning cycle and are located in the region II, are characterized for high combustion pressure and complexity. This cycle usually needs more than two pumps to use the turbine power efficiently. The fuel line can be divided into the gas generator line and the combustor line, and only the gas generator line is need to be pressured more because the combustion pressure in the gas generator is much higher than that of the combustor. Basically, all the oxidizer goes into the gas generator and than to the combustor, thus the auxiliary LOx pump is not critically necessary. However, for the various reasons, the LOx line requires a booster pump. A gas generator after burning cycle engines produces relatively high specific impuls than that of the open cycle engines. Thus it is suitable for upper stages of launch vehicles.

  • PDF

A Experimental Study for Improving Performance of Igniter for Amateur Small Rockets (아마추어 소형로켓 점화기 성능 향상을 위한 실험적 연구)

  • Sim, Ju-Hyen;Lim, Seung-Vin;Park, Sang-Sub;Park, Wan-Ju;Lee, Jin-Sung;Choi, Jae-Won;Hong, Ju-Hyun;Chae, Jae-Ou
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.353-358
    • /
    • 2008
  • Inha Rocket Research Institute has made the igniter that is combination of black powder and PVA polymer for ignition small rocket. But recent igniter is not satisfy because of the performance of igniter is not identified. So, we confirmed requirement of igniter by comparing of ratio of black powder and PVA through experimental method. Especially we studied with ignition temperature for propellant and stable combustion pressure that is requirements of propellant. We can know the tendency of combustion properties by ratio of oxidizer and combustion catalyst through changing of temperature and pressure of exhaust gas of igniter.

  • PDF

Hot-Fire Test of a Turbopump for a 30 Ton Class Engine in Real Propellant Environment (30톤급 엔진용 터보펌프 실매질 고온시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.11-17
    • /
    • 2009
  • Hot-fire test of a turbopump for a gas generator cycle rocket engine of 30 ton class was carried out in real propellant environment. Liquid oxygen and kerosene were used for the oxidizer pump and the fuel pump, respectively, while hot gas produced by the gas generator was supplied to the turbine. A part of the propellant discharged from the pumps was provided to the gas generator. The turbopump was run stably at both on-design and off-design conditions, satisfying all the performance requirements. This paper describes one of the test cases, where the turbopump was run for 120 seconds at three different operating modes in one test. In terms of performance characteristics of pumps and turbine, the results from turbopump assembly test using real propellant showed a good agreement with those from the turbopump component tests using simulant working fluid.

  • PDF

A Study on the Combustion Characteristic in Hybrid Rocket Motor using PE/$LN_2O$ (PE/$LN_2O$ 하이브리드 로켓 모터의 연소특성에 관한 연구)

  • Kim, Gi-Hun;Lee, Jung-Pyo;Kim, Soo-Jong;Cho, Jung-Tae;Kim, Hak-Chul;Woo, Kyoung-Jin;Sung, Hong-Gye;Moon, Hee-Jang;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.233-236
    • /
    • 2009
  • In this study, the characteristic of the hybrid rocket motor with $LN_2O$(Liquid Nitrous oxide) was investigated experimentally. HDPE(High Density PolyEthlene) was used as fuel with different sized single port. When used $LN_2O$, combustion efficiency is lower than using $GN_2O$(Gas Nitrous oxide), because of completeness of vaporization of droplet and mixing. And regression rate was changed by different oxidizer phase. This behavior was considered that flame temperature and combustion of solid fuel front/end surface.

  • PDF

Critical Design Result of Liquid Oxygen Filling System for Korea Space Launch Vehicle-II Launch Complex (한국형발사체 발사대시스템 산화제공급설비 상세설계)

  • Seo, Mansu;Ko, Min-Ho;Sun, Jeong-Woon;Suh, Hyun-Min;Lee, Jae Jun;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2017
  • In this paper, the liquid oxygen filling system (LOXFS) of the launch complex system of Korea Space Launch Vehicle-II (KSLV-II) is introduced based on critical design result by KARI in 2015 to 2016. The function and specification of the main systems of the liquid oxygen filling system, such as the storage tank, the drainage tank, the supply pumping system, the curved heat exchanger with liquid nitrogen, end valve block system, and umbilical connection, are presented.

Flame Structure and Combustion Dynamic Characteristics of GCH4/GO2 in Bi-Swirl Coaxial Injectors (동축 와류형 분사기에서 기체메탄/기체산소 화염 구조와 연소 동특성)

  • Bak, Sujin;Hwang, Donghyun;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.28-38
    • /
    • 2019
  • To investigate the relation between flame structure and combustion dynamic characteristics in bi-swirl coaxial injectors for a liquid rocket engine, combustion experiments were performed using gaseous methane and gaseous oxygen. CH* radicals and pressure fluctuations were simultaneously measured by changing the injector geometries such as recess length/orifice diameter and the flow conditions such as equivalence ratio/oxidizer mass flow rate. As the injector geometries affected the velocities and mixing of the propellants, the change in flame structures was observed. From a result of the frequency analysis, it was confirmed that combustion dynamic characteristics varied according to the injector geometry/flow condition and combustion instabilities could occur under specific recess length/flow conditions.

Nano-Sized Mullite(3Al2O3.42SiO2) Colloids Fabricated by Spray Combustion Synthesis (SCS) Technique (분무연소합성(SCS)법에 의한 나노크기 물라이트(3Al2O3.42SiO2) 콜로이드 제조)

  • Lee, Sang-Jin;Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.297-301
    • /
    • 2004
  • Nano-sized mullite (3Al$_2$O$_3$$.$2SiO$_2$) colloids were prepared by use of the spray combustion method. For combustion reaction, Al(NO$_3$)$_3$$.$9$H_2O$, and CH$_{6}$N$_4$O were used as an oxidizer and a fuel respectively, and then colloidal silica was also added as 2SiO$_2$source for mullite. The temperature of the reaction chamber was kept at 80$0^{\circ}C$ to initiate the ignition of droplets of the mixed precursors. For preventing droplet coagulation, the droplet number concentration was reduced using the metal screen filter, and the residence time of aerosol was kept at 2.5 seconds for laminar flow. The synthesized colloidal particles had an uniform spherical shape with 130 nanometer size and the crystalline phase showed the mullite with stoichiometry in the observations of XRD and TEM.

The liquefaction system of the exhaust gas using cold energy in underwater engine (수중기관에서 냉열을 이용한 배기가스 액화시스템 해석)

  • Lee, Geun-Sik;Jang, Yeong-Su;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1591-1602
    • /
    • 1996
  • In operating the underwater engines such as encountered in exploring submarines, the dumping of the exhaust gas out of the engine requires a large portion of the total power, frequently amounting to 25-30% of the power generated. This unfavorable circumstance can be cured by liquefying the exhaust gas and storing it. In the present study, two liquefaction systems were simulated to enhance the overall efficiency; one is a closed cycle diesel engine and the other is a closed cycle LNG engine. The liquefied natural gas (LNG) is chosen as a fuel, not only because its use is economical but also because its cold energy can be utilized within the liquefaction system. Since a mixture of oxygen and carbon dioxide is used as an oxidizer, liquefying carbon dioxide is of major concern in this study. For further improving this system, the intercooling of the compressor is devised. The necessary power consumed for the liquefying system is examined in terms of the related properties such as pressure and temperature of the carbon dioxide vessel as a function of the amount of the exhaust gas which enters the compressor. The present study was successful to show that much gain in the power and reduction of the vessel pressure could be achieved in the case of the closed cycle LNG engine. The compression power of exhaust gas were observed remarkably lower, typically only 6.3% for the closed cycle diesel engine and 3.4% for the closed cycle LNG engine respectively, out of net engine power. For practicality, a design -purpose map of the operating parameters of the liquefaction systems was also presented.

Stable Production Technique of Paprika (Capsicum annuum L.) by Hydrogen Peroxide Treatment at Summer (여름철 과산화수소를 이용한 파프리카(Capsicum annuum L.) 안정생산기술)

  • Cho, Ill-Hwan;Lee, Woo-Moon;Kwan, Ki-Bum;Woo, Young-Hoe;Lee, Kwan-Ho
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.297-301
    • /
    • 2009
  • Hydrogen peroxide, which is used in various crops as an oxidizer to improve high temperature adaptation, was evaluated on the effects on productivity and disease incidence in paprika (Capsicum annuum L.) by periodic leaf spray at summer. Hydrogen peroxide treatment not only increased the leaf thickness and SPAD (chlorophyll content) but also the fruit set numbers per plant by 2. Hydrogen peroxide content increase in leaf resulted in increase of catalase and peroxidase activities, and the powdery mildew disease (Leveillula taurica) was also suppressed by the treatment. Transpiration was improved by the reduced leaf stomata resistance in the hydrogen peroxide treatment. Therefore, hydrogen peroxide leaf spray is recommended for improvement of summer productivity in paprika.

Numerical Simulations on Nonlinear Behaviors of Diffusional-Thermal Instabilities in Counterflow Diffusion Flames (대향류 확산화염에서 확산-전도 불안정의 비선형 거동에 대한 수치해석)

  • Lee, Su-Ryong;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.695-702
    • /
    • 2002
  • Nonlinear dynamics of striped diffusion flames, by the diffusional-thermal instability with Lewis numbers sufficiently less than unity, is numerically investigated by examining various two-dimensional flame-structure solutions. The Lewis numbers for fuel and oxidizer are assumed to be identical and an overall single-step Arrhenius-type chemical reaction rate is employed in the model. Particular attention is focused on identifying the flame-stripe solution branches corresponding to each distinct stripe pattern and hysteresis encountered during the transition. At a Damkohler number slightly greater than the extinction Damkohler number, eight-stripe solution first emerges from one dimensional solution. The eight-stripe solution survives Damkohler numbers much smaller than the extinction Damkohler number until the transition to four-stripe solution occurs at the first forward transition Damkohler number. At the second forward transition Damkohler number, somewhat smaller than the first transition Damkohler number, the transition to two-stripe solution occurs. However, anu further transition from two-stripe solution to one-stripe solution is not always possible even if one-stripe solution can be independently accessed for particular initial conditions. The Damkohler number ranges for two-stripe and one-stripe solutions are found to be virtually identical because each stripe is an independent structure if distance between stripes is sufficiently large. By increasing the Damkohler number, the backward transition can be observed. In comparison with the forward transition Damkohler numbers, the corresponding backward transition Damkohler numbers are always much greater, thereby indicating significant hysteresis between the stripe patterns of strained diffusion flames.