Stable Production Technique of Paprika (Capsicum annuum L.) by Hydrogen Peroxide Treatment at Summer

여름철 과산화수소를 이용한 파프리카(Capsicum annuum L.) 안정생산기술

  • Published : 2009.09.30

Abstract

Hydrogen peroxide, which is used in various crops as an oxidizer to improve high temperature adaptation, was evaluated on the effects on productivity and disease incidence in paprika (Capsicum annuum L.) by periodic leaf spray at summer. Hydrogen peroxide treatment not only increased the leaf thickness and SPAD (chlorophyll content) but also the fruit set numbers per plant by 2. Hydrogen peroxide content increase in leaf resulted in increase of catalase and peroxidase activities, and the powdery mildew disease (Leveillula taurica) was also suppressed by the treatment. Transpiration was improved by the reduced leaf stomata resistance in the hydrogen peroxide treatment. Therefore, hydrogen peroxide leaf spray is recommended for improvement of summer productivity in paprika.

본 연구는 파프리카 재배농가에서 과산화수소를 이용하여 여름철 고온극복에 관한 연구수행 결과이다. 고온기 과산화수소(순도 30%)를 0.3%로 희석하여 5일주기로 살포한 결과 파프리카의 엽이 두꺼워지고 기공저항 속도가 낮아 순조로운 증산작용이 가능하였다. 주당 착과수는 무처리에 비하여 약 2개가 많았다. 또한 과산화수소처리에 따라 엽내 과산화수소량이 증가하는 경향이었고, 항산화효소인 catalase와 peroxidase의 활력이 증가되었다. 여름철 파프리카 재배에서 가장 많이 발생하는 흰가루병 방제를 위하여 농약사용이 불가피한 상황이지만 생산물의 농약잔류 등으로 사용에 많은 제한이 있는 현 상황에서 과산화수소의 주기적인 이용으로 흰가루병을 방제할 수 있고 생산량도 높일 수 있어 금후 파프리카 재배농가의 많은 이용이 기대 된다.

Keywords

References

  1. Chamnongpol, S., H. Willckens, W. Moeder, C. Langebartels, H. Sandennann, and M. van Montagu. 1998. Defens activation and enhanced pathogen tolerance induced by H20 2 in transgenic plants. Proc. Natl. Acad. Sci. USA 95:5818-5823 https://doi.org/10.1073/pnas.95.10.5818
  2. Dat, J., S. Vandenabeele, E. Vranova, M. Van Montagu, D. lnze, and F. Van Breusegem. 2000. Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57:779-795 https://doi.org/10.1007/s000180050041
  3. Hongxiao Zhang, Van Xia, Guiping Wang and Zhenguo Shen. 2005. Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation 301 and total activity of copper-zinc superoxide dismutase in roots of Eisholtzia haichowensis. Planta An International Journal of Plant Biology 47:258-264
  4. Idso, S.B. 1982. Non-water-stressed baselines: a key to measuring and interpreting plant water stress. Agricultural Meteorology 27:59-70 https://doi.org/10.1016/0002-1571(82)90020-6
  5. Jackson, R.D., S.B. Idso, RJ. Reginato, and PJ. Pinter. 1981. Canopy temperature as a crop water stress indicator. Water Resources Research 17:11-33 https://doi.org/10.1029/WR017i001p00011
  6. Jiang, M. and J. Zhang. 2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell PhysioL 42:1265-1273 https://doi.org/10.1093/pcp/pce162
  7. Lu, H. and V.J. Higgins. 1999. The effect of hydrogen peroxide on the viability of tomato cells and of the fungal pathogen Cladosporium fillvum. PhysioL Mol. Plant Pathol. 54:131-143 https://doi.org/10.1006/pmpp.1998.0195
  8. Prasad, T.K., M.D. Anderson, and C.R. Stewart. 1994. Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maizeseedlings. Plant Physiol. 105:619-627
  9. Taub, D.R., J.R. Seemann, and J.S. Coleman. 2000. Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant, Celt and Environment 23, 649-656 https://doi.org/10.1046/j.1365-3040.2000.00574.x
  10. Woo, Y.H., H.J. Kim, T.Y. Kim, K.D. Kim, Y.C. Hnh, H. Chun, I.H. Cho, Y.I. Nam, K.D. Ko, K.H. Lee, and K.H. Hong. 2006. The influence of hydrogen peroxide treatment on water stress, photosynthesis and thermotolerance of cucumber (Cucumis sativus) in greenhouse cultivation during summer. J. Bio-Environment Control 15(1):39-45
  11. Woo, Y.H., H.J. Kim, Y.I. Nam, l.H. Cho, and Y.S. Kwon. 2000. Predicting and measuring transpiration based on phytomonitoring of tomato in greenhouse. J. Kor. Soc. Hort. Sci. 41 (5):459-463
  12. Woo, Y.H., J.M. Lee, H.J. Kim, and Y.l. Nam. 1995. Forced ventilation number of air changes to set point of inside air temperature in summer glasshouse. J. BioEnvironment Control 4(2):223-231
  13. Woo, Y.H., J.M. Lee, H.J. Kim, and Y.S. Kwon. 1996. Prediction of maximum air temperature and cooling load of glasshouse during summer. J. Kor. Soc. Hort. Sci. 37(3):479-485
  14. Yordanov, L., V. Velikova, and T. Tsonev. 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica. 38(1):171-186 https://doi.org/10.1023/A:1007201411474