• Title/Summary/Keyword: oxide cathode

Search Result 436, Processing Time 0.027 seconds

Enhancement of Photocurrent Generation by C60-encapsulated Single-walled Carbon Nanotubes in Ru-sensitized Photoelectrochemical Cell

  • Lee, Jung-Woo;Park, Tae-Hee;Lee, Jong-Taek;Jang, Mi-Ra;Lee, Seung-Jin;Kim, Hee-Su;Han, Sung-Hwan;Yi, Whi-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2689-2693
    • /
    • 2012
  • Single-walled carbon nanotubes (SWNTs) and $C_{60}$-encapsulated SWNTs ($C_{60}@SWNTs$) are introduced to Ru-sensitized photoelectrochemical cells (PECs), and photocurrents are compared between two cells, i.e., an $RuL_2(NCS)_2$/DAPV/SWNTs/ITO cell and an $RuL_2(NCS)_2$/DAPV/$C_{60}@SWNTs$/ITO cell. [L = 2,2'-bipyridine-4,4'-dicarboxylic acid, DAPV = di-(3-aminopropyl)-viologen, and ITO = indium-tin oxide] The photocurrents are increased by 70.6% in the presence of $C_{60}@SWNTs$. To explain the photocurrent increase, the reverse-field emission method is used, i.e., $RuL_2(NCS)_2$/DAPV/SWNTs/ITO cell (or $RuL_2(NCS)_2$/DAPV/$C_{60}@SWNTs$/ITO cell) as an anode and a counter electrode Pt as a cathode in the external electric field. The improved field emission properties, i.e., ${\beta}$ (field enhancement factor) and emission currents in the reverse-field emission with $C_{60}@SWNTs$ indicate the enhancement of the PEC electric field, which implies the improvement of the electron transfer rate along with the reduced charge recombination in the cell.

Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED (일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기)

  • Kim, Ji-Hun;Maeng, Min-Jae;Hong, Jong-Am;Hwang, Ju-Hyeon;Choe, Hong-Gyu;Mun, Je-Hyeon;Lee, Jeong-Ik;Jeong, Dae-Yul;Choe, Seong-Yul;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF

Crystal Structures, Electrical Conductivities and Electrochemical Properties of LiCo1-XMgxO2(x=0.03) for Secondary Lithium Ion Batteries (리튬 2차 전지용 LiCo1-XMgxO2(x=0.03)의 결정구조, 전기전도도 및 전기화학적 특성)

  • Kim, Ho-Jin;Chung, Uoo-Chang;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.602-606
    • /
    • 2005
  • [ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.

Investigation of a Thermal Stress for the Unit Cell of a Solid Oxide Fuel Cell (고체산화물 연료전지 단위셀의 열응력에 관한 연구)

  • Kim, Young-Jin;Park, Sang-Kyun;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.414-420
    • /
    • 2011
  • Thermal stress analysis of a planar anode-supported SOFC considering electrochemical reactions has been performed under operating conditions where average current density varies from 0 to 2000 $A/m^2$. For the case of the 2000 $A/m^2$ operating condition, Structural stress analysis based on the temperature distributions obtained from the CFD analysis of the unit cell has also been done. From this one way Fluid-Structure Interaction(FSI) analysis, Maximum Von-Mises stress under negligible temperature gradient fields occurs when cell components are perfectly bonded. The maximum stress of the electrolyte, cathode and anode in a unit cell SOFC is 262.58MPa, 28.55MPa and 15.1MPa respectively. The maximum thermal stress is critically dependent on static friction coefficient.

Artificial Photosynthesis System Containing CO2 Conversion Process (이산화탄소 변환 과정이 포함된 인공 광합성 시스템)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • This paper presents an integrated photochemical reaction system (i.e., an artificial leaf) that uses earth-abundant catalysts for artificial photosynthesis with a carbon dioxide ($CO_2$) fixation process. The performance of the system was investigated in terms of the energy capture and conversion capabilities. A wireless configuration was achieved by directly doping cobalt oxide as an oxygen-evolving catalyst for water splitting reaction on the illuminated surface of photovoltaic (PV) cell, as well as molybdenum disulfide ($MoS_2$) as an efficient catalyst for $CO_2$ reduction on the back substrate surfaces of the PV cell. The system produces hydrogen and carbon monoxide (CO) as sustainable fuels (i.e., synthesis gas) at around 4.5% efficiency, which implies more than 75% catalytic efficiency at the cathode. The process of solar-driven $CO_2$ conversion and water-splitting reaction is contained in one system, which is one step closer to the successful realization of artificial photosynthesis.

Synthesis and Characterization of Novel Light-Emitting Copolymers with Electron-Withdrawing Substituents

  • Jin, Sung-Ho;Koo, Dae-Sung;Hwang, Chan-Koo;Do, Jung-Yun;Kim, Young-Inn;Gal, Yeong-Soon;Lee, Jae-Wook;Hwang, Jin-Taek
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.114-119
    • /
    • 2005
  • We synthesized two new series of alternating copolymers, poly[bis(2-(4-phenylenevinylene)-2-cyanoethenyl)-9,9-dihexyl-9H-fluoren-2,7-yl-alt-1,4-phenylene](Polymer-I)and poly[bis(2-(4-phenylenevinylene)-2­cyanoethenyl)-9,9-dihexyl-9H-fluoren-2,7-yl-alt-2,7-(9,9-dihexylfluorene)](Polymer-II), via the Suzuki coupling reaction, for use in light-emitting diodes (LEDs). Defect-free uniformly thin films of these polymers were found to be easily formed on indium-tin oxide (ITO) coated glass substrates. Multi-layer LEDs with ITO/PEDOT/Polymer/ LiF/Al configurations with or without an $Alq_3$ electron transport layer were fabricated with these polymers. The maximum EL emissions of Polymer-I and Polymer-II with an $Alq_3/LiF/Al$ cathode were observed at 516 and 533 nm, respectively. The maximum brightness and external luminance efficiency of the devices fabricated with the EL polymers were found to be $411 cd/m^2$ and 0.16 cd/A, respectively.

Synthesized and Characterization of high density cathode materials for Lithium Secondary Batteries (리튬이온이차전지용 고밀도 양극활물질의 합성 및 평가)

  • Kwon, Yong-Jin;Choi, Byung-Hyun;Ji, Mi-Jung;Sun, Yang-Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.429-429
    • /
    • 2008
  • Li$[Ni_{1/2}Co_{1/2}]O_2$ powder were synthesized from co-precipitation spherical metal oxide, $[Ni_{1/2}Co_{1/2}](OH)_2$. The preparation of metal hydroxide was significantly dependent on synthetic conditions, such as pH, amount of chelating agent, stirring speed, etc. The optimized condition resulted in $[Ni_{1/2}Co_{1/2}](OH)_2$, of which the particle size distribution was uniform and the particle shape was spherical, as observed by scanning electron microscopy. Calcination of the uniform metal hydroxide with LiOH at higher temperature led to a well-ordered layer-structured Li$[Ni_{1/2}Co_{1/2}]O_2$, as confirmed by X-ray diffraction pattern. Also these materials have ${\alpha}-NaFeO_2$ ($R\bar{3}m$) structure. Due to the homogeneity of the metal hydroxide, $[Ni_{1/2}Co_{1/2}](OH)_2$, the final product, Li$[Ni_{1/2}Co_{1/2}]O_2$, was also significantly uniform, i.e., the average particle size was of about 10 to 15 ${\mu}m$ in diameter and the distribution was relatively narrow. As a result, the corresponding tap-density was also high approximately 2.41 $gcm^{-3}$, of which the value is comparable to that of commercialized $LiCoO_2$.

  • PDF

Fabrication of Transparent Ultra-thin Single-walled Carbon Nanotube Films for Field Emission Applications

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Kim, Myoung-Su;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.353-353
    • /
    • 2008
  • Carbon nanotubes (CNTs) are attractive for field emitter because of their outstanding electrical, mechanical, and chemical properties. Several applications using CNTs as field emitters have been demonstrated such as field emission display (FED), backlight unit (BLU), and X-ray source. In this study, we fabricated a CNT cathode using transparent ultra-thin CNT film. First, CNT aqueous solution was prepared by ultrasonically dispersing purified single-walled carbon nanotubes (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). To obtain the CNT film, the CNT solution in a milliliter or even several tens of micro-litters was deposited onto a porous alumina membrane through vacuum filtration process. Thereafter, the alumina membrane was solvated by the 3 M NaOH solution and the floating CNT film was easily transferred to an indium-tin-oxide (ITO) glass substrate of $0.5\times0.5cm^2$ with a film mask. The transmittance of as-prepared ultra-thin CNT films measured by UV-Vis spectrophotometer was 68~97%, depending on the amount of CNTs dispersed in an aqueous solution. Roller activation, which is a essential process to improve the field emission characteristics of CNT films, increased the UV-Vis transmittance up to 93~98%. This study presents SEM morphology of CNT emitters and their field emission properties according to the concentration of CNTs in an aqueous solutions. Since the ultra-thin CNT emitters prepared from the solutions show a high peak current density of field emission comparable to that of the paste-base CNT emitters and do not contain outgassing sources such as organic binders, they are considered to be very promising for small-size-but-high-end applications including X-ray sources and microwave power amplifiers.

  • PDF

Electrical Properties of YSZ Electrolyte Film Prepared by Electron Beam PVD (EB-PVD법에 의해 제조된 YSZ 전해질의 전기적 특성)

  • Shin, Tae-Ho;Yu, Ji-Haeng;Lee, Shiwoo;Han, In-Sub;Woo, Sang-Kuk;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.117-122
    • /
    • 2005
  • Electron Beam Physical Vapor Deposition (EB-PVD) is a typical technology for thermal barrier coating with Yttria Stabilized Zirconia (YSZ) on aero gas turbine engine. In this study EB-PVD method was used to fabricate dense YSZ film on NiO-YSZ as a electrolyte of Solid Oxide Fuel Cell (SOFC). Dense YSZ films of -10 $\mu$m thickness showed nano surface structure depending on deposition temperature. Electrical conductivities of YSZ film and electric power density of the single cell were evaluated after screen- printing $LaSrCoO_3$ as a cathode.

Red Organic LED with Dual Dopants of Rubrene and GDI 4234 (Rubrene/GDl 4234 Dual 도펀트를 이용한 적색 유기발광다이오드)

  • Jang, Ji-Geun;Kang, Eui-Jung;Kim, Hee-Won;Shin, Se-Jin;Gong, Myoung-Sun;Lim, Sung-Kyoo;Oh, Myoung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.309-310
    • /
    • 2005
  • In the fabrication of high performance red organic light emitting diode, 2-TNA TA [4,4',4" -tris (2-naphthylphenyl- phenylamino)-triphenylamine] as hole injection material and N PH [N,N'-bis (1-naphthyl) -N,N' -diphenyl-1, 1'-biphenyl-4,4'- diamine] as hole transport material were deposited on the ITO (indium tin oxide)/glass substrate by vacuum evaporation, And then, red color emission layer was deposited using Alq3 as a host material and Rubrene (5,6,11,12- tetraphenylnaphthacene) and GDI 4234 as dopants. Finally, small molecular weight OLED with the structure of ITO/2-TNATA/ NPB/Alq3+Rubrene+GDI4234/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode. respectively. Green OLED fabricated in our experiments showed the color coordinate of CIE(0.65,0.35) and the maximum luminescence efficiency of 2.1 lm/W at 7 V with the peak emission wavelength of 632 nm.

  • PDF