• 제목/요약/키워드: oxidative induction time

검색결과 58건 처리시간 0.025초

동충하초약침액(冬蟲夏草藥鍼液)이 가토(家兎) 신피질절편(腎皮質切片)에서 세포막물질이동계(細胞膜物質移動系)의 기능장애(機能障碍)에 미치는 영향(影響) (Benefical Effect of Cordyceps Sinensis Sacc. Extract (CSS) on Oxidant-Induced Membrane Tpransport Dysfunction in Rabbit Renal Cortical Slices)

  • 천갑술;서정철;윤현민;송춘호;안창범;장경전
    • Journal of Acupuncture Research
    • /
    • 제18권3호
    • /
    • pp.123-133
    • /
    • 2001
  • Objective : This study was undertaken to determine whether Cordyceps sinensis Sacc. (CSS) extract exerts the protective effect against oxidant-induced alterations in membrane transport function in renal tubules. Methods : Membrane transport fucntion was estimated by examining alterations in p-aminohippurate (PAH) uptake in rabbit renal cortical slices. For induction oxidative stress, slices were treated with an organic peroxide cumene hydroperoxide for 60 min at $37^{\circ}C$. Cumene hydroperoxide inhibited PAH uptake in a time dependent manner. Results : CSS at 0.5-5% concentrations prevented cumene hydroperoxide-induced inhibition of PAH uptake. CSS at 1% also attenuated LDH release and lipid peroxidation induced by cumene hydroperoxide. When slices were treated with 0.2 mM mercury chloride, PAH uptake was inhibited and lipid peroxidation was increased. These changes by mercury were significantly prevented by CSS. Conclusion : These results suggest that CSS prevents oxidant-induced alterations in membrane transport function in rabbit renal cortical slices. Such protective effect of CSS may be attributed to inhibition of peroxidation of membrane lipid.

  • PDF

Role of AMP-Activated Protein Kinase (AMPK) in Smoking-Induced Lung Inflammation and Emphysema

  • Lee, Jae Seung;Park, Sun Joo;Cho, You Sook;Huh, Jin Won;Oh, Yeon-Mok;Lee, Sang-Do
    • Tuberculosis and Respiratory Diseases
    • /
    • 제78권1호
    • /
    • pp.8-17
    • /
    • 2015
  • Background: AMP-activated protein kinase (AMPK) not only functions as an intracellular energy sensor and regulator, but is also a general sensor of oxidative stress. Furthermore, there is recent evidence that it participates in limiting acute inflammatory reactions, apoptosis and cellular senescence. Thus, it may oppose the development of chronic obstructive pulmonary disease. Methods: To investigate the role of AMPK in cigarette smoke-induced lung inflammation and emphysema we first compared cigarette smoking and polyinosinic-polycytidylic acid [poly(I:C)]-induced lung inflammation and emphysema in $AMPK{\alpha}1$-deficient ($AMPK{\alpha}1$-HT) mice and wild-type mice of the same genetic background. We then investigated the role of AMPK in the induction of interleukin-8 (IL-8) by cigarette smoke extract (CSE) in A549 cells. Results: Cigarette smoking and poly(I:C)-induced lung inflammation and emphysema were elevated in $AMPK{\alpha}1$-HT compared to wild-type mice. CSE increased AMPK activation in a CSE concentration- and time-dependent manner. 5-Aminoimidazole-4-carboxamide-1-${\beta}$-4-ribofuranoside (AICAR), an AMPK activator, decreased CSE-induced IL-8 production while Compound C, an AMPK inhibitor, increased it, as did pretreatment with an $AMPK{\alpha}1$-specific small interfering RNA. Conclusion: $AMPK{\alpha}1$-deficient mice have increased susceptibility to lung inflammation and emphysema when exposed to cigarette smoke, and AMPK appears to reduce lung inflammation and emphysema by lowering IL-8 production.

CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation

  • Kim, Hyo-Jeong;Zheng, Min;Kim, Seul-Ki;Cho, Jung-Jee;Shin, Chang-Ho;Joe, Yeon-Soo;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.376-382
    • /
    • 2011
  • Background: Carbon monoxide (CO) is a cytoprotective and homeostatic molecule with important signaling capabilities in physiological and pathophysiological situations. CO protects cells/tissues from damage by free radicals or oxidative stress. NAD(P)H:quinone oxidoreductase (NQO1) is a highly inducible enzyme that is regulated by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, which is central to efficient detoxification of reactive metabolites and reactive oxygen species (ROS). Methods: We generated NQO1 promoter construct. HepG2 cells were treated with CO Releasing Molecules-2 (CORM-2) or CO gas and the gene expressions were measured by RT-PCR, immunoblot, and luciferase assays. Results: CO induced expression of NQO1 in human hepatocarcinoma cell lines by activation of Nrf2. Exposure of HepG2 cells to CO resulted in significant induction of NQO1 in dose- and time-dependent manners. Analysis of the NQO1 promoter indicated that an antioxidant responsible element (ARE)-containing region was critical for the CO-induced Nrf2-dependent increase of NQO1 gene expression in HepG2 cells. Conclusion: Our results suggest that CO-induced Nrf2 increases the expression of NQO1 which is well known to detoxify reactive metabolites and ROS.

들기름의 산화안정성에 미치는 레시틴의 산화방지 작용 (Antioxidative Effect of Commercial Lecithin on the Oxidative Stability of Perilla Oil)

  • 안태회;김종수;박성준;김현위;박기문;최춘언
    • 한국식품과학회지
    • /
    • 제23권3호
    • /
    • pp.251-255
    • /
    • 1991
  • 들기름의 산화안정성 향상을 위해 primary antioxidant로 이용한 몇 가지 상업용 레시틴에 토코페롤, 구연산, ascorbyl palmitate 등의 항산화제 및 상승제를 첨가하여 들기름의 산화방지 효과 및 상승효과를 AOM 시험과 OVEN 시험에 의하여 비교 연구하였다. AOM시간이 2시간인 들기름에 5%의 상업용 레시틴을 첨가했을 때 우제유사(迂製油社) I 제품만이 8시간인 것을 제외하고 AOM 시간이 16시간인 정제 대두유의 유도시간 보다 길었다. 레시틴의 종류 및 농도에 따른 AOM 시험 조건에서의 산화안정성과 $60,\;37^{\circ}C$ OVEN 시험에서의 산화안정성은 유사한 실험결과를 나타냈다. 토코페롤은 일반 유지의 경우와는 다르게 ${\gamma}-rich-tocopherol$${\dalta}-rich-tocopherol$과 mixed tocopherol를 첨가한 경우 보다 항산화 효과가 우수하였다. 또한 들기름에 레시틴의 첨가량을 증가할 수록 유도시간이 증가되었으며 레시틴에 대한 토코페롤, 구연산, ascorbyl palmitate의 혼합물은 상승효과가 인정되었다.

  • PDF

금궤요략(金匱要略) 심통 처방 중 과루해백반하탕과 과루해백백주탕이 대식세포 극성화에 미치는 영향 (Effects of 『Geum-Gwe-Yo-Ryak(金匱要略)』 Prescription for Chest Pain Including Kwaruhaebaekbanha-tang and Kwaruhaebaekpaekju-tang on Macrophage Polarization)

  • 손창현;이상민;유가람;이승준;임동우;김혁;박원환;김재은
    • 대한한의학회지
    • /
    • 제40권2호
    • /
    • pp.51-62
    • /
    • 2019
  • Objectives: This study was designed to evaluate the macrophages polarization of traditional Korean medicine on cardiac pain about Geum-Gwe-Yo-Ryak's two prescriptions including Kwaruhaebaekbanha-tang (KHB) and Kwaruhaebaekpaekju-tang (KHP). Materials and methods: Flow cytometry analysis was used to measure the changes in the ratio of M1 type and M2 type macrophages. Protein expression of nuclear factor-like 2 (Nrf2), heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were measured by Western Blot, and ABCA1 and SR-B1 were detected by real time PCR (RT-PCR). Intracellular lipid accumulation was measured by Oil Red O staining (ORO staining). Results: KHB and KHP increase anti-oxidative activity related protein levels including Nrf2 and HO-1. Furthermore, KHB and KHP inhibit lipid accumulation on intracellular levels through induction of ATP binding receptor cassette subfamily A member 1 (ABCA1) and scavenging receptor class B member 1 (SR-B1), respectively. Finally, KHB and KHP also blocked pro-inflammatory mediators including tumor necrosis factor-alpha ($TNF{\alpha}$) and interleukin-6 (IL-6), iNOS and COX-2 expression. Conclusion: This study suggests that KHB and KHP potently regulate the M1/M2 macrophage polarization.

The involvement of Parkin-dependent mitophagy in the anti-cancer activity of Ginsenoside

  • Sun, Xin;Hong, Yeting;Shu, Yuhan;Wu, Caixia;Ye, Guiqin;Chen, Hanxiao;Zhou, Hongying;Gao, Ruilan;Zhang, Jianbin
    • Journal of Ginseng Research
    • /
    • 제46권2호
    • /
    • pp.266-274
    • /
    • 2022
  • Colon cancer, the third most frequent occurred cancer, has high mortality and extremely poor prognosis. Ginsenoside, the active components of traditional Chinese herbal medicine Panax ginseng, exerts antitumor effect in various cancers, including colon cancer. However, the detailed molecular mechanism of Ginsenoside in the tumor suppression have not been fully elucidated. Here, we chose the representative ginsenoside Rg3 and reported for the first time that Rg3 induces mitophagy in human colon cancer cells, which is responsible for its anticancer effect. Rg3 treatment leads to mitochondria damage and the formation of mitophagosome; when autophagy is inhibited, the clearance of damaged mitochondria can be reversed. Next, our results showed that Rg3 treatment activates the PINK1-Parkin signaling pathway and recruits Parkin and ubiquitin proteins to mitochondria to induce mitophagy. GO analysis of Parkin targets showed that Parkin interacts with a large number of mitochondrial proteins and regulates the molecular function of mitochondria. The cellular energy metabolism enzyme GAPDH is validated as a novel substrate of Parkin, which is ubiquitinated by Parkin. Moreover, GAPDH participates in the Rg3-induced mitophagy and regulates the translocation of Parkin to mitochondria. Functionally, Rg3 exerts the inhibitory effect through regulating the nonglycolytic activity of GAPDH, which could be associated with the cellular oxidative stress. Thus, our results revealed GAPDH ubiquitination by Parkin as a crucial mechanism for mitophagy induction that contributes to the tumor-suppressive function of ginsenoside, which could be a novel treatment strategy for colon cancer.

폐암세포주에서 저용량 시스플라틴에 의해 유도된 자가포식 (Induction of Autophagy by Low Dose of Cisplatin in H460 Lung Cancer Cells)

  • 신정현;장혜연;정진수;조경화;황기은;김소영;김휘정;이삼윤;이미경;박순아;문성록;이강규;조향정;양세훈
    • Tuberculosis and Respiratory Diseases
    • /
    • 제69권1호
    • /
    • pp.16-23
    • /
    • 2010
  • Background: Most lung cancer patients receive systemic chemotherapy at an advanced stage disease. Cisplatin-based chemotherapy is the main regimen for treating advanced lung cancer. Recently, autophagy has become an important mechanism of cellular adaptation under starvation or cell oxidative stress. The purpose of this study was to determine whether or not autophagy can occurred in cisplatin-treated lung cancer cells. Methods: H460 cells were incubated with RPMI 1640 and treated in $5{\mu}M$ or $20{\mu}M$ cisplatin concentrations at specific time intervals. Cells surviving cisplatin treatment were measured and compared using an MTT cell viability assay to cells that underwent apoptosis with autophagy by nuclear staining, apoptotic or autophagic related proteins, and autophagic vacuoles. The development of acidic vascular organelles was using acridine orange staining and fluorescent expression of GFP-LC3 protein in its transfected cells was observed to evaluate autophagy. Results: Lung cancer cells treated with $5{\mu}M$ cisplatin-treated were less sensitive to cell death than $20{\mu}M$ cisplatin-treated cells in a time-dependent manner. Nuclear fragmentation at $5{\mu}M$ was not detected, even though it was discovered at $20{\mu}M$. Poly (ADP-ribose) polymerase cleavages were not detected in $5{\mu}M$ within 24 hours. Massive vacuolization in the cytoplasm of $5{\mu}M$ treated cells were observed. Acridine orange stain-positive cells was increased according in time-dependence manner. The autophagosome-incorporated LC3 II protein expression was increased in $5{\mu}M$ treated cells, but was not detected in $20{\mu}M$ treated cells. The expression of GFP-LC3 were increased in $5{\mu}M$ treated cells in a time-dependent manner. Conclusion: The induction of autophagy occurred in $5{\mu}M$ dose of cisplatin-treated lung cancer cells.

제2형 당뇨 동물모델에서 가시오가피 추출물의 당화혈색소 및 최종당화산물 억제를 통한 혈당조절 효과 (Beneficial Effects of Acanthopanax senticosus Extract in Type II Diabetes Animal Model via Down-Regulation of Advanced Glycated Hemoglobin and Glycosylation End Products)

  • 권한올;이민희;김용재;김은;김옥경
    • 한국식품영양과학회지
    • /
    • 제45권7호
    • /
    • pp.929-937
    • /
    • 2016
  • 본 연구에서는 랫트를 이용한 제2형 당뇨 동물모델로 같은 혈당조절 효과가 나타나는지 검토하고 이러한 효과가 당화 혈색소를 포함한 최종당화산물(advanced glycation end products, AGEs)과 어떤 상관관계가 있는지 또한 단백질과 당화를 촉진해 당화혈색소 생성의 원인 중 하나인 산화적 스트레스와 관련된 기전을 규명하고자 하였다. 기존의 db/db 마우스에서 실험한 결과와 마찬가지로 랫트를 이용한 제2형 당뇨모델에서도 가시오가피 추출물의 섭취는 혈당을 강하시키고 homeostasis model assessment(Homa-IR)를 감소시켜 인슐린 저항성 개선에 도움을 주는 것으로 확인되었다. 특히 혈중 당화혈색소량의 감소가 두드러졌는데 이는 산화적 스트레스 감소로 인한 지질과산화물 생성의 억제가 중요한 원인으로 생각되며 이와 관련된 혈중 사이토카인 IL-$1{\beta}$와 TNF-${\alpha}$의 농도도 감소한 것으로 나타났다. 당화혈색소는 산화적 스트레스에 의해 최종당화산물로 전환이 되어 인슐린 저항성 세포의 protein kinase C(PKC)를 활성화하여 transforming growth factor(TGF)-${\beta}$를 생성하는데 가시오가피 추출물의 섭취는 최종당화산물의 농도, PKC 그리고 TGF-${\beta}$ 모두를 억제하는 것으로 확인되었으며, 이것은 가시오가피 추출물 성분이 PKC와 TGF-${\beta}$에 직접 작용하기보다는 신호전달체계의 상위에 존재하는 최종당화산물을 억제하여 나타난 결과로 생각한다. 향후 연구에서는 가시오가피 추출물을 분획화하여 어떤 성분에 의하여 당화혈색소와 최종당화산물 생성을 억제하는지에 대한 구체적인 실험이 이루어져야 할 것으로 여겨진다.

일반시장에서 튀김식품에 사용된 기름의 화학적 변화 (Chemical Changes of the Deep Fat Frying Oils Used Commercially)

  • 주광지;하계숙
    • 한국식품영양과학회지
    • /
    • 제18권3호
    • /
    • pp.247-254
    • /
    • 1989
  • 튀김 식품에 사용되는 기름들은 반복적으로 높은 온도에서 계속하여 사용되므로 튀김기름이 산패 중합되어서 인체에 해를 끼칠 수가 있다. 그러나 현재 사용하던 기름에 대한 폐기처분이나 어떤 법적인 규제가 없다. 이 연구보고서는 일반시장에서 반복하여 사용된 기름에 새 기름을 첨가하여 사용한 기름과 가정용 기름을 시료로 하여 유지의 일반성 상과 가열시간에 따르는 유지의 변화를 조사하여 다음과 같은 결과를 얻었다. 일반시장에서 몇가지 튀김식품에 사용되는 기름은 가정용 튀김기름보다 그 품질면에서 열등하였다. 또한 가열하기전 신선한 기름 그 자체가 정제식용유의 규격기준에 미달되었다. 튀김기름은 튀김횟수가 증가하고 가열시간이 증가함에따라 유리지방산가, 과산화물가와 요오드가의 증가 또는 감소등으로 유지 산패의 전형적인 특징을 나타내다가 신선한 기름의 첨가로 가열전 기름의 수준으로 환원되어졌다. 튀김기름속에 잔존하는 비휘발성 극성성분의 함량은 가열시간이 증가함에 따라 신선한 기름의 첨가에 관계없이 증가하였으며 가열 22시간 후에는 극성성분의 함량이 산패된 기름의 수준까지 이르렀다. 튀김기름의 지방산 조성은 가열시간이 경과함에 따라 팔미친산, 스테아린산 함량의 비율은 증가하였고 리놀레인산, 리놀레닌산은 그 함량이 각각 감소하였다. 채종유중 고에루신산 채종유는 다량의 에루신산을 함유하고 있으므로 식용에 부적합하다고 할 수 있다.

  • PDF

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.