• Title/Summary/Keyword: oxidative enzymes

Search Result 602, Processing Time 0.027 seconds

Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-κB in LPS-stimulated RAW264.7 cells and mouse liver

  • Kim, Dae Hyun;Chung, Jae Heun;Yoon, Ji Sung;Ha, Young Mi;Bae, Sungjin;Lee, Eun Kyeong;Jung, Kyung Jin;Kim, Min Sun;Kim, You Jung;Kim, Mi Kyung;Chung, Hae Young
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.54-63
    • /
    • 2013
  • Ginsenoside Rd is a primary constituent of the ginseng rhizome and has been shown to participate in the regulation of diabetes and in tumor formation. Reports also show that ginsenoside Rd exerts anti-oxidative effects by activating anti-oxidant enzymes. Treatment with ginsenoside Rd decreased nitric oxide and prostaglandin $E_2$ ($PGE_2$) in lipopolysaccharides (LPS)-challenged RAW264.7 cells and in ICR mouse livers (5 mg/kg LPS; LPS + ginsenoside Rd [2, 10, and 50 mg/kg]). Furthermore, these decreases were associated with the down-regulations of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 and of nuclear factor (NF)-${\kappa}B$ activity in vitro and in vivo. Our results indicate that ginsenoside Rd treatment decreases; 1) nitric oxide production (40% inhibition); 2) $PGE_2$ synthesis (69% to 93% inhibition); 3) NF-${\kappa}B$ activity; and 4) the NF-${\kappa}B$-regulated expressions of iNOS and COX-2. Taken together, our results suggest that the anti-inflammatory effects of ginsenoside Rd are due to the down-regulation of NF-${\kappa}B$ and the consequent expressional suppressions of iNOS and COX-2.

Enzymatic Characterization of Salmonella typhimurium Mannitol Dehydrogenase Expressed in Escherichia coli (Salmonella typhimurium에서 유래한 Mannitol Dehydrogenase 유전자의 대장균 내 발현 및 효소특성 규명)

  • Jang, Myoung-Uoon;Park, Jung-Mi;Kim, Min-Jeong;Kang, Jung-Hyun;Lee, So-Won;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.156-162
    • /
    • 2012
  • A mannitol dehydrogenase (StMDH) gene was cloned from Salmonella typhimurium LT2 (KCTC 2421) and overexpressed in Escherichia coli. It has a 1,467 bp open reading frame encoding 488 amino acids with deduced molecular mass of 54 kDa, which shares approximately 36% of amino acid identity with known long-chain dehydrogenase/reductatse (LDR) family enzymes. The recombinant StMDH showed the highest activity at $30^{\circ}C$, and pH 5.0 and 10.0 for D-fructose reduction and D-mannitol oxidation, respectively. On the contrary, it has no activity on glucose, galactose, xylose, and arabinose. StMDH can catalyze the oxidative/reductive reactions between D-fructose and D-mannitol only in the presence of $NAD^+$/NADH as coenzymes. These results indicate that StMDH is a typical $NAD^+$/NADH-dependent mannitol dehydrogenase (E.C. 1.1.1.67).

Association of Poly (ADP-Ribose) Polymerase 1 Variants with Oral Squamous Cell Carcinoma Susceptibility in a South Indian Population

  • Anil, Sukumaran;Gopikrishnan, PB;Basheer, Ashik Bin;Vidyullatha, BG;Alogaibi, Yahya A;Chalisserry, Elna P;Javed, Fawad;Dalati, MHN;Vellappally, Sajith;Hashem, Mohamed Ibrahim;Divakar, Darshan Devang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4107-4111
    • /
    • 2016
  • Background: Oral cancers account for approximately 2% of all cancers diagnosed each year; however, the vast majority (80%) of the affected individuals are smokers whose risk of developing a lesion is five to nine times greater than that of non-smokers. Tobacco smoke contains numerous carcinogens that cause DNA damage, including oxidative lesions that are removed effectively by the base-excision repair (BER) pathway, in which poly (ADP-ribose) polymerase 1 (PARP-1), plays key roles. Genetic variations in the genes encoding DNA repair enzymes may alter their functions. Several studies reported mixed effects on the association between PARP-1 variants and the risk of cancer development. Till now no reported studies have investigated the association between PARP-1 variants and oral squamous cell carcinoma (OSCC) risk in an Indian population. Materials and Methods: In the present case control study 100 OSCC patients and 100 matched controls were genotyped using PARP1 single nucleotide peptides (SNP's) rs1136410 and rs3219090 using TaqMan assays. Results: The results indicated significantly higher risk with PARP1 rs1136410 minor allele "C" (OR=1.909; p=0.02942; CI, 1.060-3.439). SNP rs1136410 also showed significantly increased risk in patients with smoking habit at C/C genotype and at minor allele C. Conclusions: The PAPR-1 Ala762Val polymorphism may play a role in progression of OSCC. Larger studies with a greater number of samples are needed to verify these findings.

Effect of Cold Exposure on Thyroid Thermogenesis in Rats (한냉에 노출된 흰쥐에서 갑상선 호르몬이 체열 생산인 미치는 영향)

  • 황애란
    • Journal of Korean Academy of Nursing
    • /
    • v.13 no.2
    • /
    • pp.87-104
    • /
    • 1983
  • It has been well documented that animals exposed to cold show increased activity of thyroid gland. The calorigenic action of thyroid hormone has been demonstrated by a variety of in vivo and in vitro studies. According to Edelman et al., the thyroid thermogenesis is due to activation of energy consuming processes, especially the active sodium transport by the hormone in target tissues. If so, the increase in thyroid activity during cold exposure should induce increased capacity of sodium transport in target tissue and the change in tissue metabolism should be precisely correlated with the change in Na+_K+_ATPase activity of the tissue. This possibility was tested in the present study: in one series, changes in oxygen consumption and Na+_K+_-ATPase activity of liver preparations were measured in rats as a function of thyroid status, in order to establish the effect of thyroid hormone on the tissue respiration and enzyme system in another series, the effect of cold stimulus on the serum thyroid hormone level, hepatic tissue oxygen consumption and Na+_K+_ATPase activity in rats. The results obtained are as follows: 1. The Na+_dependent oxygen consumption of liver slices, the oxygen consumption of liver mitochondria and the Na+_K+_ATPase activity of liver preparations were significantly inhibited in hypothyroidism and activated in hyperthyroidism. Kinetic analysis indicated that the Vmax. of Na+_K+_ATPase was decreased in hypothyroidism and increased in hyperth)'roidism. 2. In cold exposed rats, the serum triiodothyronine (T₃) level increased rapidly during the initial one day of cold exposure, then declined slowly to the control level after two weeks. The serum thyroxine (T₄) level decreased gradually throughout the cold exposure. Accordingly the T₃/T₄ratio increased. The mitochondrial oxygen consumption and the Na+_dependent oxygen consumption of liver slices increased during the first two days and then remained unchanged thereafter The activity of the Na+_K+_ATPase in liver preparations increased during cold exposure with a time course similar to that of oxygen consumption. Kinetic analysis indicated that the Vmax. of Na+_K+_ATPase increased. 3. Once the animal was adapted to cold, induction of hypothyroidism did not significantly alter the hepatic oxygen consumption and Na+_K+_ATPase activity. These results indicate that: 1) thyroid hormone increases capacities of mitochondrial respiration and active sodium transport in target tissues such as liver; 2) the increased T₃level during the initial period of cold exposure facilitates biosynthesis of Na+_K+_ATPase and mitochondrial enzymes for oxidative phosphorylation, leading to enhanced production and utilization of ATP, hence heat production.

  • PDF

Increase of Alveolar Macrophages Contributes to the Enhanced Xanthine Oxidase Activity in the Bronchoalveolar Lavage Fluid of Rats Given IL-1 Intratracheally (Interleukin-1의 기관지 투여 후 나타나는 폐세척액 내 대식세포의 수적변화에 따른 Xanthine Oxidase의 활성변화)

  • Cho, Hyun-Gug;Yoon, Chong-Guk;Choi, Jeung-Mok;Park, Won-Hark;Lee, Young-Man
    • Applied Microscopy
    • /
    • v.31 no.3
    • /
    • pp.275-285
    • /
    • 2001
  • The pulmonary alveolar macrophage is thought to play an important role in the mediation of acute inflammatory lung injury by secretory products including degraded enzymes, cytokines, and reactive oxygen metabolites . This study was conceived to understand the role of alveolar macrophage in oxidative stress induced acute lung injury. To examine the alveolar macrophages and xanthine oxidase (XO) activity in bronchoalveolar lavage fluid (BALF), time-dependent changes of numbers of alveolar macrophages, monocytes and neutrophils in alveolar cavity were counted in association with ultrastructural and cytochemical observations of lung tissue and alveolar cells. The number of monocytes was increased (p<0.001) at 1h after IL-1 treatment compared with that of sham. At 2h after instillation of IL-1, the number of alveolar macrophages was the highest, XO activity in BALF was elevated at 2h after IL-1 instillation and the activity was markedly elevated(p<0.05) at 3h after IL-1 treatment. On the basis of these experimental results, it is suggested that, during early phase of acute lung injury induced by IL-1, alveolar macrophage-derived XO contributes to lung injury earlier than the neutrophilic respiratory burst.

  • PDF

Effects of N-acetylcysteine on the energy status and antioxidant capacity in heart and liver of cold-stressed broilers

  • Li, Chengcheng;Peng, Meng;Liao, Man;Guo, Shuangshuang;Hou, Yongqing;Ding, Binying;Wu, Tao;Yi, Dan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1444-1454
    • /
    • 2020
  • Objective: Cold stress induces oxidative damage and impairs energy status of broilers. N-acetylcysteine (NAC) exhibits antioxidant properties and modulates energy metabolism of animals. This study was conducted to investigate the effects of NAC on energy status and antioxidant capacity of heart and liver in the cold-stressed broilers. Methods: The experiment consisted of 4 treatments in a 2×2 factorial arrangement with two diets (basal diet or plus 0.1% NAC) and two ambient temperatures (thermoneutral [conventional ambient temperature] or cold stress [10℃±1℃ during days 15 to 42]). Results: No ascites were seen in cold-stressed broilers. NAC did not attenuate the impaired growth performance of stressed birds. However, NAC decreased plasma asparagine but increased aspartate levels in cold-stressed birds (p<0.05). NAC reduced hepatic adenosine triphosphate (ATP) but elevated adenosine diphosphate contents in unstressed birds (p<0.05). The hepatic ratio of adenosine monophosphate (AMP) to ATP was increased in birds fed NAC (p<0.05). NAC decreased plasma malondialdehyde (MDA) level and cardiac total superoxide dismutase (T-SOD) activity in unstressed birds, but increased hepatic activities of T-SOD, catalase and glutathione peroxidase in stressed birds (p<0.05). NAC down-regulated hepatic AMP-activated protein kinase but up-regulated cardiac heme-oxigenase mRNA expression in stressed birds, and decreased expression of hepatic peroxisome proliferator-activated receptor coactivator-1α as well as hypoxia-inducible factor-1α in liver and heart of birds. Conclusion: Dietary NAC did not affect energy status but enhanced the hepatic antioxidant capacity by increasing the activities of antioxidant enzymes in cold-stressed broilers.

Antimelanogenic Effect of Purpurogallin in Murine Melanoma Cells (마우스 흑색종세포에서 Purpurogallin의 멜라닌 생성 억제 효과)

  • Kim, Han-Hyuk;Kim, Tae Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1905-1911
    • /
    • 2015
  • Melanin is one of the most important factors affecting skin color. Melanogenesis is the bioprocess of melanin production by melanocytes in the skin and hair follicles and is mediated by several enzymes, such as tyrosinase, tyrosinase related protein (TRP)-1, and TRP-2. Convenient enzymatic transformation of the simple phenol pyrogallol with polyphenol oxidase originating from pear to an oxidative product, purpurogallin, was efficient. The structure of the pyrogallol oxidation product was identified on the basis of spectroscopic methods. The biotransformation product purpurogallin showed significant inhibitory effects against both melanin synthesis and tyrosinase activity in a dose-dependent manner in B16 melanoma cells. In addition, purpurogallin significantly attenuated melanin production by inhibiting TRP-1, and TRP-2 expression through modulation of their corresponding transcription factors, and microphthalamia- associated transcription factor in B16 cells. Consequently, purpurogallin derived from convenient enzymatic transformation of pyrogallol might be a beneficial material for reducing skin hyperpigmentation.

Neuroprotective effects of herbal mixture HT070 on global cerebral ischemia in rats

  • Song, Jungbin;Lee, Donghun;Kim, Young-Sik;Lee, Hyun Jeong;Lee, Seunggyeong;Kim, Dong Kuk;Kang, Shin Ho;Shin, Yong Kook;Choi, Ho-Young;Kim, Hocheol
    • The Korea Journal of Herbology
    • /
    • v.31 no.4
    • /
    • pp.101-109
    • /
    • 2016
  • Objectives : HT070 is a mixture of herbal extracts from root of Scutellaria baicalensis and stem bark of Eleutherococcus senticosus , which have long been used for stroke therapy in traditional Korean Medicine. The purpose of this study was to investigate the neuroprotective effects of HT070 on global cerebral ischemia and its potential mechanisms.Methods : Transient global cerebral ischemia was produced by 10 min of four-vessel occlusion (4-VO) in male Wistar rats. HT070 was administered orally at a dosage of 200 mg/kg twice at 0 and 90 min after reperfusion. Hippocampal neuronal damage was measured 7 days after reperfusion. To explore the potential mechanisms, we used hydrogen peroxide (H2O2)-induced rat pheochromocytoma (PC12) cells as an in vitro model. PC12 cells were pretreated with HT070 for 1 h and then exposed to 100 μM H2O2 for 6 h in the presence of HT070. Cell viability was measured by MTT assay and the mRNA expression of Bax, Bcl-2, iNOS and COX-2 were measured by quantitative RT-PCR.Results : Oral administration of HT070 at a dose of 200 mg/kg significantly reduced neuronal death in the hippocampal CA1 region by 13.4% as compared to the vehicle-treated group. HT070 increased cell viability, reversed the down-regulated Bcl-2 mRNA level, and suppressed the up-regulated mRNA expressions of Bax, iNOS, and COX-2 in H2O2-treated PC12 cells.Conclusions : HT070 protects against delayed neuronal death after global cerebral ischemia and its neuroprotection properties might be attributed to the inhibition of mitochondrial apoptosis and ROS-generating enzymes.

Molecular Mechanism of Tetrabromobisphenol A (TBBPA)-induced Target Organ Toxicity in Sprague-Dawley Male Rats

  • Choi, Jae-Seok;Lee, Young-Jun;Kim, Tae-Hyung;Lim, Hyun-Jung;Ahn, Mee-Young;Kwack, Seung-Jun;Kang, Tae-Seok;Park, Kui-Lea;Lee, Jae-Won;Kim, Nam-Deuk;Jeong, Tae-Cheon;Kim, Sang-Geum;Jeong, Hye-Gwang;Lee, Byung-Mu;Kim, Hyung-Sik
    • Toxicological Research
    • /
    • v.27 no.2
    • /
    • pp.61-70
    • /
    • 2011
  • Brominated flame retardants (BFRs) are present in many consumer products ranging from fabrics to plastics and electronics. Wide use of flame retardants can pose an environmental hazard, which makes it important to determine the mechanism of their toxicity. In the present study, dose-dependent toxicity of tetrabromobisphenol A (TBBPA), a flame retardant, was examined in male prepubertal rats (postnatal day 18) treated orally with TBBPA at 0, 125, 250 or 500 mg/kg for 30 days. There were no differences in body weight gain between the control and TBBPA-treated groups. However, absolute and relative liver weights were significantly increased in high dose of TBBPA-treated groups. TBBPA treatment led to significant induction of CYP2B1 and constitutive androstane receptor (CAR) expression in the liver. In addition, serum thyroxin (T4) concentration was significantly reduced in the TBBPA treated group. These results indicate that repeated exposure to TBBPA induces drug-metabolising enzymes in rats through the CAR signaling pathway. In particular, TBBPA efficiently produced reactive oxygen species (ROS) through CYP2B1 induction in rats. We measured 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative damage, in the kidney, liver and testes of rats following TBBPA treatment. As expected, TBBPA strongly induced the production of 8-OHdG in the testis and kidney. These observations suggest that TBBPA-induced target organ toxicity may be due to ROS produced by metabolism of TBBPA in Sprague-Dawley rats.

Induction of Disease Resistance by Acibenzolar-S-methyl, the Plant Activator against Gray Mold (Botrytis cinerea) in Tomato Seedlings (저항성 유도물질(acibenzolar-S-methyl)처리에 의한 토마토 잿빛곰팡이병 발병억제)

  • Lee Jung-Sup;Kang Nam-Jun;Seo Sang-Tae;Han Kyoung-Suk;Park Jong-Han;Jang Han-Ik
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • The plant defence activator, Acibenzolar-S-methyl [benzo (1,2,3) thiadiazole-7-carbothioic acid-S-methyl ester, ASM] was assayed on tomato seedlings for its ability to induce resistance against Botrytis cinerea, the causal agent of gray mold in tomato. Pre-treatment of plants with ASM reduced the severity of the disease as well as the growth of the mycelium in plants. In ASM treated plants, reduction in disease severity (up to 55%) was correlated with suppression of mycelia growth (up to 46.5%) during the time course of infection. In plants treated with ASM, activities of peroxidase were determined as markers of resistance. Applications of ASM induced Progressive and significant increase of the enzyme in locally treated tissues. Such responses were expressed earlier and with a much higher magnitude when ASM-treated seedlings were challenged with the pathogen, thus providing support to the concept that a signal produced by the pathogen is essential for triggering enhanced synthesis and accumulation of the enzymes. No such activities were observed in water-treated control plants. Therefore, the slower symptom development and reduction in mycelium growth in ASM treated plants might be due to the increase in activity of oxidative and antioxidative protection systems in plants.