• Title/Summary/Keyword: oxidative enzymes

Search Result 602, Processing Time 0.03 seconds

Effects of Hwangryunhaedok-tang on DNA Damage, Antioxidant Enzymes Expression and Acetylcholinesterase Activity (황연해독탕(黃連解毒湯)의 산화적 DNA 손상에 대한 보호효과 및 항산화효소계의 발현과 Acetylcholinesterase 활성에 미치는 영향)

  • Moon, Jin-Young
    • The Korea Journal of Herbology
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • Objectives : In Alzheimer's disease(AD), free radical oxidative stress caused by amyloid beta-peptide may lead to DNA damage, neuronal dysfunction, neurotoxicity and cell death, Hwangryunhaedok-tang(HHT) is traditionally used for the treatment of pyrogenetic diseases. To develop a new anti-AD drug from natural herb, HHT was selected and extracted in this study. Methods : The antioxidant activities of HHT water extract powder were examined by hydroxyl radical-induced DNA strand nicking assay, and antioxidative enzymes expression assay in H4IIE cell. In addition, HHT was examined for the inhibitory effect on the acetylcholinesterase(AChE) using by Ellman's coupled assay. Results: The HHT exhibit DNA protective effect in the hydroxyl radical-induced DNA Strand nicking assay, mRNA expression of superoxide dismutase and glutathione peroxidase were recovered at a normal level by HHT treatment in H4IIE cell. Furthermore, water extract of HHT showed inhibitory effect on AChE activity. Conclusion : These results suggest that HHT may be effective in delaying and preventing AD progression related to the free radical-induced DNA damage and AChE activity.

  • PDF

Effects of Vitamins C and E on Hepatic Drug Metabolizing Function in Nypoxia/Reoxygenation (저산소 및 산소재도입시 vitamin C와 E가 간장 약물대사 기능에 미치는 영향)

  • 윤기욱;이상호;이선미
    • YAKHAK HOEJI
    • /
    • v.44 no.3
    • /
    • pp.237-244
    • /
    • 2000
  • Liver isolated from 18 hours fasted rats was subjected to $N_2$hypoxia (for 45 min) followed by reoxygenation (for 30 min). The perfusion medium used was Krebs-Henseleit bicarbonate buffer (pH 7.4, $37^{\circ}C$). Vitamin C (0.5 mM) and trolox C (0.5 mM), soluble vitamin E analog, were added to perfusate. Lactate dehydrogenase (LDH), total glutathione, oxidized glutathione, lipid peroxide and drug-metabolizing enzymes were measured. After hypoxia LDH significantly increased but this increase was attenuated by vitamin C and combination of vitamin C and E. Total glutathione and oxidized glutathione in perfusate markedly increased during hypoxia and this increase was inhibited by vitamins C, E and its combination. Similarly; oxidized glutathione and lipid peroxide in liver tissue increased after hypoxia and reoxygenation and this increase was inhibited by vitamin I and combination of vitamin C and E. Hepatic drug metabolizing function (phase I, II) were suppressed during hypoxia but improved during reoxygenation. While vitamins C and E only increased glucuronidation, the combination of vitamin C and E increased the oxidation, glucuronidation and sulfation. Our findings suggest that vitamins C and E synergistically ameliorates hepatocellular damage as indicated by abnormalities in drug metabolizing function during hypoxia/reoxygenation and that this protection is in major part, caused by decreased oxidative stress.

  • PDF

Differential responses of two rice varieties to salt stress

  • Ghosh, N.;Adak, M.K.;Ghosh, P.D.;Gupta, S.;Sen Gupta, D.N.;Mandal, C.
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.89-103
    • /
    • 2011
  • Two rice varieties, viz. Nonabokra and Pokkali, have been evaluated for their responses to salinity in terms of some physiological and biochemical attributes. During the exposure to salinity (200 mM concentration of sodium chloride for 24, 48, and 72 h), a significant increase in sodium was recorded which was also concomitant with the changes of other metabolic profiles like proline, phenol, polyamine, etc. The protein oxidation was significantly increased and also varied between the two cultivars. The changes in activities of anti-oxidative enzymes under stress were significantly different to the control. The detrimental effects of salinity were also evident in terms of lipid peroxidation, chlorophyll content, protein profiles, and generation of free radicals; and these were more pronounced in Pokkali than in Nonabokra. The assessment and analysis of these physiological characters under salinity could unravel the mechanism of salt responses revealed in this present study and thus might be useful for selection of tolerant plant types under the above conditions of salinity.

Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

  • Park, Myung Hee;Igarashi, Kazuei
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.

Responses of Transgenic Tobacco Plants Expressing Sweet Potato Peroxidases to Gamma Radiation (감마선에 대한 고구마 Peroxidase 형질전환 담배식물체의 반응)

  • 윤병욱;이행순;권석윤;김재성;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.4
    • /
    • pp.265-269
    • /
    • 1999
  • Transgenic tobacco plants expressing either a sweet potato anionic peroxidase (POD) (swpal) or neutral POD (swpnl) were irradiated by gamma radiation, and the gamma radiation-induced biochemical changes in antioxidant enzymes and plant growth inhibition were investigated at 30 days after treatment. Gamma radiation significantly inhibited the growth of all plants regardless of transgenic or nontransformed plants, showing a dose-dependent inhibition. In high dosage of 50 and 70 Gy, plant heights were severely retarded and new leaves does not emerged. No significant changes in antioxidant enzymes such as POD, superoxide dismutase and catalase were observed in all plants regardless of irradiation dosages ranging from 10 to 50 Gy. These results suggest that sweet potato PODs may be not involved in the protection against the oxidative stress induced by gamma radiation.

  • PDF

Induction of DNA Breakage by the Hot-water Extracts of Fructus Chaenomelis (Chaenomeles sinensis Koehne)

  • Nam, Seok Hyun;Chon, Dae Jin;Kang, Mi Young
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.156-160
    • /
    • 2000
  • The possible mechanism of the DNA strand breaking activity of the hot-water extract of Fructus Chaenomelis (dried fruit of Chaenomeles sinensis) in a closed circular duplex replica form DNA (RFI DNA) was studied through agarose gel electrophresis under various conditions. Induction of DNA strand scission by the hot-water extract of C. sinensis occurred in dose and time-dependent manners. $Cu^{2+}$ was indispensable for the induction of DNA strand breakage. Exogeneous chelating agents inhibited the DNA breaking activity, conforming the catalytic action of $Cu^{2+}$ on generation of free radicals responsible for oxidative damage. Antioxidant enzymes and some radical scavengers were used to investigate the major radical species triggering the DNA strand scission, demonstrating that a highest inhibitory activity was found in the presence of catalase, while less in the presence of tiron (a scavenger for superoxide radical), 2-aminoethyl-isothiuroniumbromide-HBr, cysteamine (scavengers for hydroxyl radical), and 1,4-diazabicyclo [2,2,2] octane (a scavenger for singlet oxygen) in decreasing order. The findings implied that oxygen radical species generated in presence of transition divalent cation during the oxidation of some compounds contained in the hot-water extract of C. sinensis is mainly responsible for inducing genotoxicity.

  • PDF

Mechanism Used by White-Rot Fungus to Degrade Lignin and Toxic Chemicals

  • Chung, Nam-Hyun;Lee, Il-Seok;Song, Hee-Sang;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.737-752
    • /
    • 2000
  • Wood-rotting basidiomycetous fungi are the most efficient degraders of lignin on earth. The white-rot fungus Phanerochaete chrysosporium has been used as a model microorganism in the study of enzymology and its application. Because of the ability of the white-rot fungus to degrade lignin, which has an irregular structure and large molecular mass, this fungus has also been studied in relation to degrading and mineralizing many environmental pollutants. The fungus includes an array of enzymes, such as lignin peroxidase (LiP), manganese-dependent peroxidase (MnP), cellobiose:quinone oxidoreductase, and $H_2O_2$-producing enzymes and also produces many other components of the ligninolytic system, such as veratryl alcohol (VA) and oxalate. In addition, the fungus has mechanisms for the reduction of degradation intermediates. The ligninolytic systems have been proved to provide reductive reactions as well as oxidative reactions, both of which are essential for the degradation of lignin and organopollutants. Further study on the white-rot fungus may provide many tools to both utilize lignin, the most abundant aromatic polymer, and bioremediate many recalcitrant organopollutants.

  • PDF

Synthesis of α-Ketobutyrolactones and γ-Hydroxy-α-Keto Acids

  • Kang, Han-Young;Ji, Yu-Mi;Yu, Yeon-Kwon;Yu, Ji-Yeon;Lee, Young-Hoon;Lee, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1819-1826
    • /
    • 2003
  • In connection with the studies for developing new enzymes that could be useful in organic synthesis, practical preparation of racemic and enantiopure forms of ${\gamma}$-hydroxy-${\alpha}$-keto acids has been successfully achieved. For racemic form of ${\gamma}$-hydroxy-${\alpha}$-keto acids, indium-mediated allylation of aldehydes with 2-(bromomethyl)acrylic acid has been employed as a key step. Oxidative cleavage of the thus formed 2-methylenebutyrolactones provided the desired ${\alpha}$-ketobutyrolactones. Enzymatic resolution of the ${\gamma}$-hydroxy-${\alpha}$-methylene esters provided the desired${\gamma}$-hydroxy-${\alpha}$-methylene acids which were successfully converted to ${\gamma}$-hydroxy-${\alpha}$-ketobutyrolactones in optically pure forms.

Effect of Maengjong-Juk (Phyllostachys Pubescens) Extract Coated Rice Diet on Antioxidative System of C57BL/6 Mice Fed Atherogenic Diet (맹종죽(Phyllostachys Pubescens)추출물 코팅쌀이 Atherogenic 식이를 섭취한 C57BL/6 마우스의 항산화 시스템에 미치는 영향)

  • 김은영;이민자;송영옥;문갑순
    • Korean Journal of Community Nutrition
    • /
    • v.9 no.4
    • /
    • pp.536-544
    • /
    • 2004
  • To evaluate the antioxidative effect of maengjong-juk (Phyllostachys pubescens) extract coated rice in vivo system, maengjong-juk extract coated rice diets were fed to C57BL/6 mice for 16 weeks. Plasma total antioxidative capacity, hepatic lipid peroxidation, protein oxidation, activities of antioxidative enzymes and total glutathione content were measured. Plasma total antioxidative capacity was elevated significantly in maengjong-juk extract diets supplemented group in a dose dependant manner. Hepatic TBARS contents were significantly decreased in maengjong-juk extract diets supplemented group compared to high cholesterol group. Maengjong-juk extract coated rice diets suppressed the protein oxidation significantly in liver. Activities of hepatic antioxidative enzymes such as total SOD, CuㆍZn-SOD, Mn-SOD, GSH-Px and catalase activities of maengjong-juk extract coated rice diets were significantly higher than those of high cholesterol diet. Total hepatic glutathione content was significantly increased by maengjong-juk extract coated rice diets administration. According to this study, numerous antioxidative materials and phytochemicals containing in maengjong-juk extracts appear to protect antioxidative systems in C57BL/6 mice fed bamboo extract coated rice diet. (Korean J Community Nutrition 9(4): 536∼544, 2004)

Antioxidant Defenses and Physiological Changes in Olive Flounder (Paralichthys olivaceus) in Response to Oxidative Stress Induced by Elevated Water Temperature (고수온 환경에 의해 유도된 산화 스트레스에 대한 넙치의 항산화 작용과 생리적 변화)

  • Shin, Hyun-Suk;An, Kwang-Wook;Kim, Na-Na;Choi, Cheol-Young
    • Korean Journal of Ichthyology
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • We determined oxidative stress caused by thermal stress in olive flounder Paralichthys olivaceus based on the altered-mRNA expression and enzymatic activity of two key antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), along with monitoring of several other biomarkers. When the fish were exposed to acute thermal change (from $20^{\circ}C$ to $25^{\circ}C$ and $30^{\circ}C$), the expression and activity of both enzymes were significantly higher at elevated temperatures ($25^{\circ}C$ and $30^{\circ}C$) than at $20^{\circ}C$. Lipid peroxidation (LPO) was also higher at $25^{\circ}C$ and $30^{\circ}C$ than at $20^{\circ}C$. In addition, the plasma $H_2O_2$ concentration was significantly increased by thermal stress. Furthermore, we investigated changes due to thermal stress by measuring levels of plasma alanine aminotransferase (AlaAT) and aspartate aminotrasferase (AspAT). Both were significantly increased by thermal stress. As an immune indicator, the lysozyme concentration was lower at $30^{\circ}C$ than at $20^{\circ}C$, indicating that thermal stress decreases immune function. Therefore, thermal stress could induce oxidative stress and suppress immune function and can cause physiological stress.