• Title/Summary/Keyword: oxidative enzymes

Search Result 602, Processing Time 0.027 seconds

Cirsium japonicum var. maackii inhibits hydrogen peroxide-induced oxidative stress in SH-SY5Y cells

  • Kim, Min Jeong;Lee, Sanghyun;Kim, Hyun Young;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.119-131
    • /
    • 2021
  • Over-produced reactive oxygen species (ROS) exert oxidative damage on lipids, proteins, and DNA in the human body, which leads to the onset of neurodegenerative diseases such as Alzheimer's disease (AD). In this study, we explored the cellular antioxidant effect of Cirsium japonicum var. maackii (CJM) against hydrogen peroxide (H2O2)-induced oxidative stress in neuronal cells. The antioxidant activity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 2',7'-dichlorofluorescin diacetate and nitric oxide (NO) assays, and the molecular mechanisms were examined by Western blot analysis. H2O2 treatment of SH-SY5Y cells decreased cell viability and increased ROS and NO production compared to H2O2-untreated cells. However, CJM increased cell viability and decreased ROS and NO accumulation in the H2O2-treated SH-SY5Y cells compared to H2O2-treated control cells. Especially, the EtOAc fraction from CJM showed the strongest antioxidant effect compared with the other extracts and fractions. Therefore, we further examined the CJM mechanism against oxidative stress using the EtOAc fraction from CJM. The EtOAc fraction up-regulated the expressions of heme oxygenase-1, NAD(P)H quinone oxidoreductase 1, and thioredoxin reductase 1. These results indicate that CJM promotes the activation of antioxidative enzymes, which eliminate ROS and NO, and further leads to an increase in the cell viability. Taken together, our results show that CJM exhibited an antioxidant activity in H2O2-treated SH-SY5Y cells, and it could be a novel antioxidant agent for the prevention or treatment of neurodegenerative disease such as AD.

Schisandrol A and gomisin N from Schisandra chinensis extract improve hypogonadism via anti-oxidative stress in TM3 Leydig cells

  • Jia Bak;Seung Ju Lee;Tae Won Kim;Seonhwa Hwang;Min Ju Park;Rohith Arunachalam;Eunsoo Yoo;Min Hi Park;Yun-Sik Choi;Hye Kyung Kim
    • Nutrition Research and Practice
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Male hypogonadism is a condition where the body does not produce enough testosterone and significantly impacts health. Age, obesity, genetics, and oxidative stress are some physiological factors that may contribute to testosterone deficiency. Previous studies have shown many pharmacological benefits of Schisandra chinensis (S. chinensis) Baillon as an anti-inflammatory and antioxidant. However, the molecular mechanism of attenuating hypogonadism is yet to be well established. This research was undertaken to study the effects of S. chinensis extract (SCE) on testosterone deficiency. MATERIALS/METHODS: S. chinensis fruit was pulverized and extracted using 60% aqueous ethanol. HPLC analysis was performed to analyze and quantify the lignans of the SCE. RESULTS: The 2,2-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays confirmed that the SCE and its major lignans (schisandrol A and gomisin N) inhibit oxidative stress. Effects of SCE analysis on the testosterone level under oxidative stress conditions revealed that both schisandrol A and gomisin N were able to recover the lowered testosterone levels. Through mRNA expression of TM3 Leydig cell, we observed that the SCE lignans were able to induce the enzymes involved in testosterone biosynthesis-related genes such as 3β-HSD4 (P < 0.01 for SCE, and P < 0.001 for schisandrol A and gomisin N), 17β-HSD3 (P < 0.001 for SCE, schisandrol A and gomisin N), and 17, 20-desmolase (P < 0.01 for schisandrol A, and P < 0.001 for SCE and gomisin N). CONCLUSIONS: These results support that SCE and its active components could be potential therapeutic agents for regulating and increasing testosterone production.

Association of CYP39A1, RUNX2 and Oxidized Alpha-1 Antitrypsin Expression in Relation to Cholangiocarcinoma Progression

  • Khenjanta, Chakkaphan;Thanan, Raynoo;Jusakul, Apinya;Techasen, Anchalee;Jamnongkan, Wassana;Namwat, Nisana;Loilome, Watcharin;Pairojkul, Chawalit;Yongvanit, Puangrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10187-10192
    • /
    • 2015
  • Cytochrome P450 (CYP) enzymes are a large family of constitutive and inducible mono-oxygenase enzymes that play a central role in the oxidative metabolism of both xenobiotic and endogenous compounds. Several CYPs are involved in metabolism of oxysterols, which are cholesterol oxidation products whose expression may be dysregulated in inflammation-related diseases including cancer. This study focused on CYP39A1, which can metabolize 24-hydroxycholesterol (24-OH) that plays important roles in the inflammatory response and oxidative stress. We aimed to investigate the expression status of CYP39A1 and its transcription factor (RUNX2) in relation to clinical significance in cholangiocarcinoma (CCAs) and to determine whether 24-OH could induce oxidative stress in CCA cell lines. Immunohistochemistry showed that 70% and 30% of CCA patients had low and high expression of CYP39A1, respectively. Low expression of CYP39A1 demonstrated a significant correlation with metastasis. Our results also revealed that the expression of RUNX2 had a positive correlation with CYP39A1. Low expression of both CYP39A1 (70%) and RUNX2 (37%) was significantly related with poor prognosis of CCA patients. Interestingly, oxidized alpha-1 antitrypsin (ox-A1AT), an oxidative stress marker, was significantly increased in CCA tissues in which CYP39A1 and RUNX2 were down regulated. Additionally, immunocytochemistry showed that 24-OH could induce ox-A1AT in CCA cell lines. In conclusion, our study revealed putative roles of the CYP39A1 enzyme in prognostic determination of CCAs.

Pectinase-treated Panax ginseng ameliorates hydrogen peroxide-induced oxidative stress in GC-2 sperm cells and modulates testicular gene expression in aged rats

  • Kopalli, Spandana Rajendra;Cha, Kyu-Min;Jeong, Min-Sik;Lee, Sang-Ho;Sung, Jong-Hwan;Seo, Seok-Kyo;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.185-195
    • /
    • 2016
  • Background: To investigate the effect of pectinase-treated Panax ginseng (GINST) in cellular and male subfertility animal models. Methods: Hydrogen peroxide ($H_2O_2$)-induced mouse spermatocyte GC-2spd cells were used as an in vitro model. Cell viability was measured using MTT assay. For the in vivo study, GINST (200 mg/kg) mixed with a regular pellet diet was administered orally for 4 mo, and the changes in the mRNA and protein expression level of antioxidative and spermatogenic genes in young and aged control rats were compared using real-time reverse transcription polymerase chain reaction and western blotting. Results: GINST treatment ($50{\mu}g/mL$, $100{\mu}g/mL$, and $200{\mu}g/mL$) significantly (p < 0.05) inhibited the $H_2O_2$-induced ($200{\mu}M$) cytotoxicity in GC-2spd cells. Furthermore, GINST ($50{\mu}g/mL$ and $100{\mu}g/mL$) significantly (p < 0.05) ameliorated the $H_2O_2$-induced decrease in the expression level of antioxidant enzymes (peroxiredoxin 3 and 4, glutathione S-transferase m5, and glutathione peroxidase 4), spermatogenesis-related protein such as inhibin-${\alpha}$, and specific sex hormone receptors (androgen receptor, luteinizing hormone receptor, and follicle-stimulating hormone receptor) in GC-2spd cells. Similarly, the altered expression level of the above mentioned genes and of spermatogenesis-related nectin-2 and cAMP response element-binding protein in aged rat testes was ameliorated with GINST (200 mg/kg) treatment. Taken together, GINST attenuated $H_2O_2$-induced oxidative stress in GC-2 cells and modulated the expression of antioxidant-related genes and of spermatogenic-related proteins and sex hormone receptors in aged rats. Conclusion: GINST may be a potential natural agent for the protection against or treatment of oxidative stress-induced male subfertility and aging-induced male subfertility.

Lymphocyte DNA Damage and Anti-Oxidative Parameters are Affected by the Glutathione S-Transferase (GST) M1 and T1 Polymorphism and Smoking Status in Korean Young Adults (흡연 여부에 따른 Glutathione S-transferase (GST) M1 및 T1 유전자 다형성이 우리나라 젊은 성인의 임파구 DNA 손상과 항산화 영양상태 지표들 간의 관련성에 미치는 영향)

  • Han, Jeong-Hwa;Lee, Hye-Jin;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.44 no.5
    • /
    • pp.366-377
    • /
    • 2011
  • Glutathione S-transferase (GST) is a multigene family of phase II detoxifying enzymes that metabolize a wide range of exogenous and endogenous electrophilic compounds. GSTM1 and GSTT1 gene polymorphisms may account for inter-individual variability in coping with oxidative stress. We investigated the relationships between the level of lymphocyte DNA and antioxidative parameters and the effect on GST genotypes. GSTM1 and GSTT1 were characterized in 301 young healthy Korean adults and compared with oxidative stress parameters such as the level of lymphocyte DNA, plasma antioxidant vitamins, and erythrocyte antioxidant enzymes in smokers and non smokers. GST genotype, degree of DNA damage in lymphocytes, erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase (GSH-Px), and plasma concentrations of total radical-trapping antioxidant potential (TRAP), vitamin C, ${\alpha}$- and ${\gamma}$-tocopherol, ${\alpha}$- and ${\beta}$-carotene, and cryptoxanthin were analyzed. Lymphocyte DNA damage assessed by the comet assay was higher in smokers than that in non-smokers, but the levels of plasma vitamin C, ${\beta}$-carotene, TRAP, erythrocyte catalase, and GSH-Px were lower than those of non-smokers (p < 0.05). Lymphocyte DNA damage was higher in subjects with the GSTM1- or GSTT1-present genotype than those with the GSTM1-present or GSTT1- genotype. No difference in erythrocyte antioxidant enzyme activities, plasma TRAP, or vitamin levels was observed in subjects with the GSTM1 or GSTT1 genotypes, except ${\beta}$-carotene. Significant negative correlations were observed between lymphocyte DNA damage and plasma levels of TRAP and erythrocyte activities of catalase and GSH-Px after adjusting for smoking pack-years. Negative correlations were observed between plasma vitamin C and lymphocyte DNA damage only in individuals with the GSTM1-present or GSTT1- genotype. The interesting finding was the significant positive correlations between lymphocyte DNA damage and plasma levels of ${\alpha}$-carotene, ${\beta}$-carotene, and cryptoxanthin. In conclusion, the GSTM1- and GSTT1-present genotypes as well as smoking aggravated antioxidant status through lymphocyte DNA damage. This finding confirms that GST polymorphisms could be important determinants of antioxidant status in young smoking and non-smoking adults. Consequently, the protective effect of supplemental antioxidants on DNA damage in individuals carrying the GSTM1- or GSTT1-present genotypes might show significantly higher values than expected.

Effect of Red Yeast (Monascus purpureus) Rice Supplemented Diet on Lipid Profiles and Antioxidant Activity in Hypercholesterolemic Rats (홍국(Monascus purpureus)쌀을 첨가한 고콜레스테롤 식이가 흰쥐의 항산화 활성에 미치는 영향)

  • Kwon, Chong Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.16-23
    • /
    • 2014
  • Red yeast rice (RYR) has been known to exhibit various biological effects, including anti-hyperlipidemia, antioxidant, anti-tumor, and anti-inflammtory activities. Oxidative stress is a main risk factor in the development of cardiovascular disease, such as atherosclerosis. Therefore, the aim of this study was to investigate the possible hypolipidemic and antioxidant effect of RYR on rats fed a high-cholesterol diet supplemented with either 0.2%, 1%, or 5% RYR for 4 weeks. We measured lipid profiles in the plasma and liver, antioxidant enzyme activities in plasma and erythrocyte, gene expression of antioxidant enzymes in the liver, and oxidative DNA damage in lymphocytes. The group supplemented with 0.2% RYR had total cholesterol level in plasma decreased by 24%, while the group supplemented with 5% RYR had high-density cholesterol increased by 20% compared to the control. The antioxidant enzyme activities were also affected by RYR supplementation. Total superoxide dismutase activities in plasma significantly decreased by 11% in the 1% RYR group, while these activities in the liver significantly decreased by 16% and 21% in the 1% and 5% supplemented group compared to the control, respectively. Glutathione peroxidase activities in plasma and erythrocytes increased 13% and 48% in the 1% RYR group, respectively. Catalase (CAT) activity in erythrocytes significantly increased by 49% and 68% in the 1% and 5% RYR group compared to the control, respectively. The gene expression of CAT was up-regulated 7.9 fold compared to the control in the 5% RYR supplemented group. These results suggest that RYR can control hyperlipidemia by improving the lipid profile and modulating oxidative stress.

Effects of Aralia elata Water Extracts on Activities of Hepatic Oxygen Free Radical Generating and Scavenging Enzymes in Streptozotocin-Induced Diabetic Rats (두릅열수추출물이 당뇨유발 흰쥐의 간조직 중 유해 활성산소 대사효소계 활성에 미치는 영향)

  • 김명주;조수열;이미경;신경희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.653-658
    • /
    • 2004
  • Oxidative stress is currently suggested as a mechanism underyling diabetes. Accordingly, the present study was designed to evaluate the effect of Aralia elate water extracts (AEW) on activities of hepatic oxygen free radical generating and scavenging enzymes in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats divided into nondiabetic group, diabetic group, and diabetic-AEW supplemented group. The extract was supplemented in 1.14% of raw Aralia elata/kg diet for 7 weeks. Diabetes was induced by injecting STZ (55 mg/kg BW, ip) once 2 weeks before sacrifying. The hepatic cytochrome P-450 content, xanthine oxidase and aminopyrine N-demethylase activities were significantly lowered in the diabetic group compared to the nondiabetic group. Whereas, the activities of aniline hydroxylase and oxygen free radical scavenging enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione S-transferase, were significantly higher in the diabetic group than in the nondiabetic group. However, the supplementation of AEW normalized these enzyme activities in STZ-induced diabetic rats. When the AEW was supplemented with the diabetic rats, hepatic glutathione content was markedly elevated as well as lipid peroxide level was significantly lowered compared to those of the diabetic group. Thus, these results suggested that AEW supplement enhanced the activities of oxygen species metabolizing enzymes in STZ-induced diabetic rats.

Ethanol Extracts of Rheum undulatum and Inula japonica Protect Against Oxidative Damages on Human Keratinocyte HaCaT cells through the Induction of ARE/NRF2-dependent Phase II Cytoprotective Enzymes (종대황과 선복화 에탄올 추출물의 인간 피부 세포주인 HaCaT 세포에서 NRF2/ARE에 의존적인 유전자 발현의 유도를 통한 항산화 효과)

  • Yoo, Ok-Kyung;Lee, Yong-Geol;Do, Ki-Hoan;Keum, Young-Sam
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.310-317
    • /
    • 2017
  • Mammalian cells control cellular homeostasis using a variety of defensive enzymes in order to combat against environmental oxidants and electrophiles. NF-E2-related factor-2 (NRF2) is a transcription factor that, in response to an exposure to oxidative stress, translocates into the nucleus and modulates the inducible expression of various phase II cytoprotective enzymes by binding to the antioxidant response element (ARE). In the present study, we have acquired 400 ethanol extracts of traditional medicinal plants and attempted to find out possible extract(s) that can increase the NRF2/ARE-dependent gene expression in human keratinocytes. As a result, we have identified that ethanol extracts of Rheum undulatum and Inula japonica strongly activated the ARE-dependent luciferase activity in HaCaT- ARE-luciferase cells. Exposure of ethanol extracts of Rheum undulatum and Inula japonica increased the viability and activated transcription and translation of NRF2-dependent phase II cytoprotective enzymes in HaCaT cells, such as heme oxygenase-1 (HO-1) and NAD[P]H:quinone oxidorecutase-1 (NQO1). In addition, ethanol extracts of Rheum undulatum and Inula japonica suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced generation of intracellular reactive oxygen species (ROS), thereby inhibiting the formation of 8-hydroxyguanosine (8-OHG) and 4-hydroxynonenal (4-HNE) in HaCaT cells. Together, our results demonstrate that ethanol extracts of Rheum undulatum and Inula japonica exert anti-oxidant effects via the induction of NRF2/ARE-dependent gene expression in human keratinocytes.

An Influence of a Combined Administration of Propofol and Isoflurane on Antioxidative Enzyme Activities in Growing Swine Erythrocytes (성장 돼지 적혈구에서의 항산화 효소 활성도에 대한 propofol 과 isoflurane 병용 투여의 영향)

  • Lee, Jae Yeon;Kim, Myung Cheol
    • Journal of Veterinary Clinics
    • /
    • v.29 no.6
    • /
    • pp.460-463
    • /
    • 2012
  • The present study was aimed to evaluate and compare the oxidative stress status of isoflurane and propofol in pigs undergoing surgery with measuring the activities of antioxidant enzymes. The pigs were divided into 2 groups according to the type of anesthesia used for the surgical procedure. In the isoflurane group (group 1), anesthesia was induced and maintained with 2-2.5% isoflurane under 100% oxygen. The propofol group (group 2) received 8 mg/kg/h of IV propofol with 0.5-1% isoflurane under 100% oxygen. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities of isoflurane group were significantly lower at the end of surgery than at induction of anesthesia, while that of the propofol group maintained their baseline values. There were significant differences in all enzymes activities between groups at the end of surgery. These results indicate that propofol is capable of preserving the antioxidant capacity in pigs anesthetized with the combination of isoflurane and propofol infusion.

Schisandra Chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats

  • Jang, Han I;Do, Gyeong-Min;Lee, Hye Min;Ok, Hyang Mok;Shin, Jae-Ho;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.8 no.3
    • /
    • pp.272-277
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study investigated the antioxidant activities and hepatoprotective effects of Schisandra chinensis Baillon extract (SCE) against tert-butyl hydroperoxide (t-BHP)-induced oxidative hepatic damage in rats. MATERIALS/METHODS: Sprague-Dawley (SD) rats were pretreated with SCE (300, 600, and 1,200 mg/kg BW) or saline once daily for 14 consecutive days. On day 14, each animal, except those belonging to the normal control group, were injected with t-BHP (0.8 mmol/kg BW/i.p.), and all of the rats were sacrificed 16 h after t-BHP injection. RESULTS: Although no significant differences in AST and ALT levels were observed among the TC and SCE groups, the high-dose SCE group showed a decreasing tendency compared to the TC group. However, erythrocyte SOD activity showed a significant increase in the low-dose SCE group compared with the TC group. On the other hand, no significant differences in hepatic total glutathione (GSH) level, glutathione reductase (GR), and glutathione peroxidase (GSH-Px) activities were observed among the TC and SCE groups. Hepatic histopathological evaluation revealed that pretreatment with SCE resulted in reduced t-BHP-induced incidence of lesions, such as neutrophil infiltration, swelling of liver cells, and necrosis. In particular, treatment with a high dose of SCE resulted in induction of phase II antioxidant/detoxifying enzyme expression, such as glutathione S-transferase (GST) and glutamate-cysteine ligase catalytic subunit (GCLC). CONCLUSIONS: Based on these results, we conclude that SCE exerts protective effects against t-BHP induced oxidative hepatic damage through the reduction of neutrophil infiltration, swelling of liver cells, and necrosis. In addition, SCE regulates the gene expression of phase II antioxidant/detoxifying enzymes independent of hepatic antioxidant enzyme activity.