• Title/Summary/Keyword: oxidative degradation

Search Result 243, Processing Time 0.027 seconds

Inhibitory Effect of Hizikia fusiformis Solvent-Partitioned Fractions on Invasion and MMP Activity of HT1080 Human Fibrosarcoma Cells

  • Lee, Seul-Gi;Karadeniz, Fatih;Oh, Jung Hwan;Yu, Ga Hyun;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.3
    • /
    • pp.184-190
    • /
    • 2017
  • Matrix metalloproteinases (MMPs) are endopeptidases that take significant roles in extracellular matrix degradation and therefore linked to several complications such as metastasis of cancer progression, oxidative stress, and hepatic fibrosis. Hizikia fusiformis, a brown algae, was reported to possess bioactivities, including but not limited to, antiviral, antimicrobial, and anti-inflammatory partly due to bioactive polysaccharide contents. In this study, the potential of H. fusiformis against cancer cell invasion was evaluated through the MMP inhibitory effect in HT1080 fibrosarcoma cells in vitro. H. fusiformis crude extract was fractionated with organic solvents, $H_2O$, n-BuOH, 85% aqueous MeOH, and n-hexane (n-Hex). The non-toxicity of the fractions was confirmed by MTT assay. All fractions inhibited the enzymatic activities of MMP-2 and MMP-9 according to the gelatin zymography assay. Cell migration was also significantly inhibited by the n-Hex fraction. In addition, both gene and protein expressions of MMP-2 and -9, and tissue inhibitor of MMPs (TIMPs) were evaluated by reverse transcription-polymerase chain reaction and Western blotting, respectively. The fractions suppressed the mRNA and protein levels of MMP-2, MMP-9 while elevating the TIMP-1 and TIMP-2, with the $H_2O$ fraction being the least effective while n-Hex fraction the most. Collectively, the n-Hex fraction from brown algae H. fusiformis could be a potential inhibitor of MMPs, suggesting the presence of various derivatives of polysaccharides in high amounts.

Antioxidant and Anti-inflammatory Activities of Butanol Extract of Melaleuca leucadendron L.

  • Surh, Jeong-Hee;Yun, Jung-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Melaleuca leucadendron L. has been used as a tranquilizing, sedating, evil-dispelling and pain-relieving agent. We examined the effects of M. leucadendron L. extracts on oxidative stress and inflammation. M. leucadendron L. was extracted with methanol (MeOH) and then fractionated with chloroform ($CHCl_3$) and butanol (BuOH). Antioxidant activity of the MeOH extract and BuOH fraction were higher than that of both ${\alpha}$-tocopherol and butyrated hydroxytoluene (BHT). Total phenol content in the extracts of M. leucadendron L., especially the BuOH fraction, well correlated with the antioxidant activity. The anti-inflammatory activity of BuOH extracts were investigated by lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production, and cyclooxygenase-2 (COX-2) expression in RAW 264.7 macrophages. The BuOH fraction significantly inhibited LPS-induced NO and $PGE_2$ production. Furthermore, BuOH extract of M. leucadendron L. inhibited the expression of COX-2 and iNOS protein without an appreciable cytotoxic effect on RAW264.7 cells. The extract of M. leucadendron L. also suppressed the phosphorylation of inhibitor ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$) and its degradation associated with nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activation. Furthermore, BuOH fraction inhibited LPS-induced NF-${\kappa}B$ transcriptional activity in a dose-dependent manner. These results suggested that M. leucadendron L. could be useful as a natural antioxidant and anti-inflammatory resource.

Carnosine and Related Compounds Protect Against Copper-Induced Damage of Biomolecules

  • Lee, Beom-Jun;Lee, Yong-Soon;Kang, Kyung-Sun;Cho, Myung-Haing;Hendricks, Deloy G.
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.350-357
    • /
    • 1999
  • At concentrations of 1 mM, the protective effects of carnosine and related compounds including anserine, homocarnosine, histidine, ${\beta}$-alanine were investigated against copper-catalyzed oxidative damage to deoxyribose, ascorbic acid, human serum albumin, liposome, and erythrocytes. Carnosine and anserine reduced Cu (II) to bathocuproine-reactive Cu (I) in a time- a and a dose-dependent manner while the others did not. Carnosine reduced 86% of $100\;{\mu}M$ Cu (II) in 60 min. Carnosine, homocarnosine, anserine, and histidine inhibited copper-catalyzed deoxyribose degradation by 75, 66, 65, and 45%, respectively. In the presence of $1\;{\mu}M$ Cu (II), carnosine and related compounds inhibited ascorbic acid oxidation by 55-85% after incubation for 20 min. In the presence of 0.15 mM ascorbic acid and 0.8 mM $H_2O_2$, carnosine, anserine, homocarnosine, and histidine inhibited copper-catalyzed oxidation of human serum albumin by 41, 21, 29, and 24%, respectively, as determined by carbonyl formation. These compounds also significantly inhibited copper-catalyzed liposomal lipid peroxidation as measured by malondialehyde and lipid hydroperoxides. Carnosine, anserine, homocarnosine, and histidine inhibited hemolysis of bovine erythrocytes induced by 0.1 mM Cu (II). These results suggest that histidine-containing dipeptides may play an important role in protecting against free radical-mediated tissue damage.

  • PDF

Chongmyung-tang Inhibits the Cytotoxicity of Beta-amyloid in Neuro 2A Neuroblastoma Cells (베타 아밀로이드 유도성 Neuro 2A 세포독성에 대한 총명탕의 효과)

  • Gug Yun Jai;Choi Hyuk;Kim Tae Heon;Kang Hyung Won;Lyu Young Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1418-1425
    • /
    • 2004
  • The water extract of Chongmyung-tang has been traditionally used for treatment of memory-disorder in oriental medicine. This study was designed to investigate the protective mechanisms of Chongmyung-tang on β-amyloid or H₂O₂-induced cytotoxicity in Neuro 2A cells. The water extract of Chongmyung-tang significantly reduced both β-amyloid or H₂O₂-induced cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Also, it inhibited the mitochondrial dysfunction including the disruption of mitochondria membrane permeability transition(MPT) and the modulation in expression of Bcl-2 family proteins in H₂O₂-treated H9c2 cells. Furthermore, pretreatment of quercetin inhibited the activation of caspase-3, in turn, degradation of ICAD/DFF45 were completely abolished in H₂O₂-treated cells. Taken together, that data suggest that the protective effects of the water extract of Chongmyung-tang against β-amyloid induced oxidative injuries may be achieved through modulation of mitochondrial dysfunction.

The In-Situ Ozone Oxidative Remediation Potential of Diesel Fuel-contaminated Soil (디젤오염토양에 대한 지중 오존산화처리 적용 가능성)

  • 유도윤;신응배;배우근
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.3-15
    • /
    • 1999
  • This paper includes the basic experimental results performed for developing an innovative and technologically feasible process wherein gaseous ozone, a powerful oxidant. is injected directly into vadose zone by which in-situ chemical degradation of semi- or, non-volatile petroleum product such as diesel fuel is derived. As ozone gas injected continuously(50mL/min, 119.0$\pm$6.1mg/L) into soil packed columns artificially contaminated with diesel fuel(initial concentration 1,485mg-DRO/kg/soil), the removal rates at the inlet and outlet point of 14hrs-operated column are 87.9% and 100.0%, respectively. On the other hand, soil vapor extraction system showed less than 30% of removal rates of residual diesel both at the inlet and outlet samples under the same experimental conditions which confirms the limited treatability of SVE in diesel contaminated soil.

  • PDF

Enhancement of potency and stability of human extracellular superoxide dismutase

  • Kim, Sunghwan;Kim, Hae-Young;Kim, Jung-Ho;Choi, Jung-Hye;Ham, Won-Kook;Jeon, Yoon-Jae;Kang, Hara;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • Cells express several antioxidant enzymes to scavenge reactive oxygen species (ROS) responsible for oxidative damages and various human diseases. Therefore, antioxidant enzymes are considered biomedicine candidates. Among them, extracellular superoxide dismutase (SOD3) had showed prominent efficacy against asthma and inflammation. Despite its advantages as a biomedicine, the difficulty in obtaining large quantity of active recombinant human SOD3 (rhSOD3) has limited its clinical applications. We found that a significant fraction of over-expressed rhSOD3 was composed of the inactive apo-enzyme and its potency against inflammation depended on the rate of metal incorporation. Also, purified rhSOD3 was unstable and lost its activity very quickly. Here, we suggest an ideal preparative method to express, purify, and store highly active rhSOD3. The enzymatic activity of rhSOD3 was maximized by incorporating metal ions into rhSOD3 after purification. Also, albumin or polyethylene glycol prevented rapid inactivation or degradation of rhSOD3 during preparative procedures and long-term storage.

Study on the Photocatalytic Efficiencies of $TiO_2$ ($TiO_2$의 광촉매 효율성에 관한 연구)

  • Lee, J.H.;Oh, H.J.;Jang, J.M.;Chi, C.S.
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • Photocatalytic $TiO_2$ films were prepared by anodic oxidation at 180 V and their structural difference caused by oxidation conditions was studies. The microstructure of $TiO_2$ films in $H_2SO_4$ and $H_2SO_4/H_2O_2$ solution was mixed type of rutile and anatase. However, the $TiO_2$ layer formed in $H_2SO_4/H_3PO_4$ and $H_2SO_4/H_3PO_4/H_2O_2$ mixture was mostly anatase type. All $TiO_2$ films prepared by anodic oxidation exhibited photocatalytic properties. The photocatalytic degradation of aniline blue was first order reaction with similar rate constants at all oxidative conditions examined in this work.

  • PDF

Effects of Dextrin and β-cyclodextrin on Protective Effect of Hovenia dulcis Fruit Extract Against Alcohol-induced Liver Damage in vivo (Dextrin과 β-cyclodextrin이 생체 내에서 헛개나무 추출물의 알코올성 손상으로부터 간보호에 미치는 영향)

  • Hong, Cheol Yi;Kim, Jin Beom;Noh, Hae-Ji;Na, Chun-Soo
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.115-119
    • /
    • 2015
  • ${\beta}$-cyclodextrin has an ability to protect compounds from oxidative reaction by collecting them within its ring-like structure. So, In harsh condition ($40^{\circ}C$), marker compound, quercetin, was dramatically reduced in Hovenia dulcis fruit extract containing dextrin at 4 and 8 week compared to 0 week, but not that containing ${\beta}$-cyclodextrin. To evaluate the effects of dextrin and ${\beta}$-cyclodextrin on protective effect of H.dulcis fruit extract against alcohol-induced liver damage, The mice were orally injected alcohol, H. dulcis fruit extract/dextrin (HD) and H. dulcis fruit extract/${\beta}$-cyclodextrin (HCD), respectively, for 7 days. The mice orally administrated with alcohol significantly enhanced the serum concentration of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the activity of lactate dehydrogenase (LDH) in serum compared to the control group. HD and HCD significantly decreased the levels of serum ALT and AST and serum LDH activities compared to alcohol group. And also alcohol group significantly increased the level of total cholesterol compared to the control group, but HD and HCD significantly reduced it compared to the alcohol group. However, the levels of TG in blood were not significantly changed in all groups. The activities of alcohol dehydrogenase (ADH) were significantly increased in HD and HCD group although those of aldehyde dehydrogenase showed an increasing tendency. This data suggested that HD and HCD were able to induce alcohol degradation in the liver tissues. All together, the results showed that HCD demonstrated their ability to protect liver from alcohol-induced damage on equal terms with HD.

Proteomic Analysis of Recombinant Saccharomyces cerevisiae upon Iron Deficiency Induced via Human H-Ferritin Production

  • Seo, Hyang-Yim;Chang, Yu-Jung;Chung, Yun-Jo;Kim, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1368-1376
    • /
    • 2008
  • In our previous study, the expression of active H-ferritins in Saccharomyces cerevisiae was found to reduce cell growth and reactive oxygen species (ROS) generation upon exposure to oxidative stress; such expression enhanced that of high-affinity iron transport genes (FET3 and FTR1). The results suggested that the recombinant cells expressing H-ferritins induced cytosolic iron depletion. The present study analyzes metabolic changes under these circumstances via proteomic methods. The YGH2 yeast strain expressing A-ferritin, the YGH2-KG (E62K and H65G) mutant strain, and the YGT control strain were used. Comparative proteomic analysis showed that the synthesis of 34 proteins was at least stimulated in YGH2, whereas the other 37 proteins were repressed. Among these, the 31 major protein spots were analyzed via nano-LC/MS/MS. The increased proteins included major heat-shock proteins and proteins related to endoplasmic reticulum-associated degradation (ERAD). On the other hand, the proteins involved with folate metabolism, purine and methionine biosynthesis, and translation were reduced. In addition, we analyzed the insoluble protein fractions and identified the fragments of Idh1p and Pgk1p, as well as several ribosomal assembly-related proteins. This suggests that intracellular iron depletion induces imperfect translation of proteins. Although the proteins identified above result from changes in iron metabolism (i.e., iron deficiency), definitive evidence for iron-related proteins remains insufficient. Nevertheless, this study is the first to present a molecular model for iron deficiency, and the results may provide valuable information on the regulatory network of iron metabolism.

Effect of KH-305 on the Nitric Oxide Synthase Activity and Erectile Dysfunction in Young Rats (KH-305 투여가 흰쥐 음경조직의 Nitric Oxide Synthase활성 및 Erectile Dysfunction에 미치는 영향)

  • Lee, Eun-Jeong;Kim, Hee-Seok;Kim, Byoung-Chul;Hwang, Sung-Wan;Hwang, Sung-Yeoun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.3
    • /
    • pp.305-310
    • /
    • 2007
  • This study was designed to investigate the effects of KH-305 on erectile dysfunction in young rats, via nitric oxide (NO)-cGMP pathways. After oral administration of the KH-305 mixture (50, 100, 200, 300 mg/kg) to young rats for 10 days, NOS and SOD protein expressions in penile tissue and testosterone in plasma were measured. cGMP degradation was also investigated using bovine vascular smooth muscle cells pretreated with an NO donor, S-nitroso-N-Acetylpenicillamine (SNAP). The penile expression levels of nNOS and eNOS-dependent NOS activities as well as SOD preventing oxidative stress by overproduction of NO were increased significantly. Also, the concentration of testosterone in the plasma was increased. In vitro, cGMP concen-trations were decreased dose dependently in the KH-305. These results suggest that KH-305 may be useful in erectile dysfunction.