• Title/Summary/Keyword: oxidative

Search Result 6,196, Processing Time 0.035 seconds

The effects of physical training on antioxidative status under exercise-induced oxidative stress

  • Choi, Eun-Young;Cho, Youn-Ok
    • Nutrition Research and Practice
    • /
    • v.1 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • This study investigated the effect of physical training and oxidative stress on the anti oxidative activity and on plasma lipid profile. Forty eight rats were given either a physical training or no training for 4 weeks and were then subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). The antioxidative activity was evaluated with the activities of catalase in plasma and superoxide dismutase (SOD), the ratio of reduced glutathione/ oxidized glutathione (GSH/GSSG) and the level of malondialdehyde (MDA) in liver. The plasma concentrations of triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C)) were also compared. Compared to those of non-training group. catalase activities of training group were lower before exercise but higher during and after exercise. SOD activities were higher regardless of exercise. GSH/GSSG ratio was higher before exercise but was not significantly different during exercise and even lower after exercise. There were no differences between non-training group and training group in MDA levels regardless of exercise. Compared to those of non-training group, atherosclerotic index of training group was lower after exercise and there were no significant differences before and during exercise. There were no differences between non-training group and training group in HDL-C regardless of exercise. These results suggest that moderate physical training can activate antioxidant defenses and decrease the atherosclerotic index and this beneficial effect is evident under exercise-induced oxidative stress.

Roles of Oxidative Stress in the Development and Progression of Breast Cancer

  • Nourazarian, Ali Reza;Kangari, Parisa;Salmaninejad, Arash
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4745-4751
    • /
    • 2014
  • Oxidative stress is caused by an imbalance in the redox status of the body. In such a state, increase of free radicals in the body can lead to tissue damage. One of the most important species of free radicals is reactive oxygen species (ROS) produced by various metabolic pathways, including aerobic metabolism in the mitochondrial respiratory chain. It plays a critical role in the initiation and progression of various types of cancers. ROS affects different signaling pathways, including growth factors and mitogenic pathways, and controls many cellular processes, including cell proliferation, and thus stimulates the uncontrolled growth of cells which encourages the development of tumors and begins the process of carcinogenesis. Increased oxidative stress caused by reactive species can reduce the body's antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are main factors in the development of cancer. Bimolecular reactions cause free radicals in which create such compounds as malondialdehyde (MDA) and hydroxyguanosine. These substances can be used as indicators of cancer. In this review, free radicals as oxidizing agents, antioxidants as the immune system, and the role of oxidative stress in cancer, particularly breast cancer, have been investigated in the hope that better identification of the factors involved in the occurrence and spread of cancer will improve the identification of treatment goals.

Soybean Oligosaccharide Reduces Oxidative Stress in Streptozotocin-injected Rats

  • Kim, Hye-Young P.;Kim, Mi-Hyun;Kim, Ji-Young;Kim, Woo-Kyung;Kim, Sook-he
    • Nutritional Sciences
    • /
    • v.6 no.2
    • /
    • pp.67-72
    • /
    • 2003
  • This study was conducted to investigate the effect of oligosaccharide on the reduction of oxidative stress. Sprague-Dawley rats were fed an AIN-93G diet or a diet containing 5% soybean oligosaccharide for 6 weeks. Each group was divided into two sub-groups after streptozotocin (STZ) injection and fed the control diet or the diet containing oligosaccharide for the next 12 days. The number of fecal bifidobacteria increased significantly in groups fed oligosaccharide diet. Elevated blood glucose concentration after STZ injection declined faster in the oligosaccharide fed group. Liver thiobarbituric acid reactive substance concentration, as an indicator of oxidative stress, did not increase in groups fed the oligosaccharide diet after the STZ injection. In addition, these groups had significantly higher glutathione peroxidase activity both in the plasma and the liver than groups fed the control diet. The results of this study suggest that soybean oligosaccharide has a beneficial effect in reducing oxidative stress in streptozotocin-injected rats.

Involvement of Caenohabditis elegans MAPK Signaling Pathways in Oxidative Stress Response Induced by Silver Nanoparticles Exposure

  • Roh, Ji-Yeon;Eom, Hyun-Jeong;Choi, Jin-Hee
    • Toxicological Research
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C.elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C.elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.

Prostaglandin A2 triggers a strong oxidative burst in Laminaria: a novel defense inducer in brown algae?

  • Zambounis, Antonios;Gaquerel, Emmanuel;Strittmatter, Martina;Salaun, Jean-Pierre;Potin, Philippe;Kupper, Frithjof C.
    • ALGAE
    • /
    • v.27 no.1
    • /
    • pp.21-32
    • /
    • 2012
  • We report an oxidative burst triggered by prostaglandin $A_2(PGA_2)$ in the brown algal kelp Laminaria digitata, constituting the first such discovery in an alga and the second finding of an oxidative burst triggered by a prostaglandin in a living organism. The response is more powerful than the oxidative burst triggered by most other chemical elicitors in Laminaria. Also, it is dose-dependent and cannot be inhibited by diphenylene iodonium, suggesting that another source than NAD(P)H oxidase is operational in the production of reactive oxygen species. Despite the very strong oxidative response, rather few effects at other levels of signal transduction pathways could be identified. $PGA_2$ does not increase lipolysis (free fatty acids) in Laminaria, and only one oxylipin (15-hydroxyeicosatetraenoic acid; 15-HETE) was found to be upregulated in Laminaria. In a subsequent set of experiments in the genome model Ectocarpus siliculosus, none of 5 selected candidate genes, all established participants in various stress responses, showed any significant differences in their expression profiles.

Anti-Oxidant, Pro-Oxidant and Anti-Inflammatory Effects of Unpolished Rice Relevant to Colorectal Cancer

  • Suwannalert, Prasit;Payuhakrit, Witchuda;Koomsang, Thidarat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5047-5056
    • /
    • 2016
  • Colorectal cancer (CRC) is a major worldwide health problem owing to its high prevalence and mortality rates. Carcinogenesis in the colon is a multistage and multifactorial process. An imbalance between free radical exposure and anti-oxidant defense systems may leads to oxidative stress and attack of macromolecules which can alter signal transduction pathways and gene expression. Consequently, oxidative damage can lead to cellular dysfunction and contribute to pathophysiological processes in a variety of diseases including CRC. One factor tightly associated with CRC is chronic inflammation, which can be present from the earliest stage of tumor onset. Unpolished rice is an attractive chemoprevention in CRC due to their anti-oxidant and anti-inflammatory activities. The aim of this paper is to review evidence linking oxidative stress and inflammation to CRC and to provide essential background information for understanding future research on oxidative stress and inflammation on CRC. Mechanisms of action of unpolished rice in CRC carcinogenesis are also discussed.

Effects of Apium graveolens Extract on the Oxidative Stress in the Liver of Adjuvant-Induced Arthritic Rats

  • Sukketsiri, Wanida;Chonpathompikunlert, Pennapa;Tanasawet, Supita;Choosri, Nutjanat;Wongtawatchai, Tulaporn
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • Apium graveolens Linn. (Apiaceae) is an indigenous plant of the North and South Americas, Southern Europe, and Asia and has been widely used as a food or a traditional medicine for treatment of inflammation and arthritis. The purpose of this study was to investigate the antioxidant effects of a methanolic extract of A. graveolens (AGE) against liver oxidative stress in an adjuvant-induced arthritic rat model. The AGE (250, 500, and 1,000 mg/kg) was given orally for 24 consecutive days after induction by injecting complete Freund's adjuvant. Liver and spleen weights were recorded. The superoxide anion level, total peroxide (TP), glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) activity, total antioxidant status, and oxidative stress index (OSI) were also measured. AGE treatment significantly decreased the levels of the superoxide anion, TP, and OSI whereas the GPx and SOD activities significantly increased in the liver of the arthritic rats. These results indicated that AGE showed an ameliorative effect against liver oxidative stress in adjuvant-induced arthritic rats by reducing the generation of liver free radicals and increasing the liver antioxidant enzyme activity.

Proteomic Analysis of the Oxidative Stress Response Induced by Low-Dose Hydrogen Peroxide in Bacillus anthracis

  • Kim, Sang Hoon;Kim, Se Kye;Jung, Kyoung Hwa;Kim, Yun Ki;Hwang, Hyun Chul;Ryu, Sam Gon;Chai, Young Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.750-758
    • /
    • 2013
  • Anthrax is a bacterial disease caused by the aerobic spore-forming bacterium Bacillus anthracis, which is an important pathogen owing to its ability to be used as a terror agent. B. anthracis spores can escape phagocytosis and initiate the germination process even in antimicrobial conditions, such as oxidative stress. To analyze the oxidative stress response in B. anthracis and thereby learn how to prevent antimicrobial resistance, we performed protein expression profiling of B. anthracis strain HY1 treated with 0.3 mM hydrogen peroxide using a comparative proteomics-based approach. The results showed a total of 60 differentially expressed proteins; among them, 17 showed differences in expression over time. We observed time-dependent changes in the production of metabolic and repair/protection signaling proteins. These results will be useful for uncovering the metabolic pathways and protection mechanisms of the oxidative response in B. anthracis.

Effects of Erythropoietin on Memory Deficits and Brain Oxidative Stress in the Mouse Models of Dementia

  • Kumar, Rohit;Jaggi, Amteshwar Singh;Singh, Nirmal
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2010
  • The present study was undertaken to explore the potential of erythropoietin in memory deficits of mice. Memory impairment was produced by scopolamine (0.5 mg/kg, $i.p.$) and intracerebroventricular streptozotocin (i.c.v STZ, 3 mg/kg, $10{\mu}l$, $1^{st}$ and $3^{rd}$ day) in separate groups of animals. Morris water-maze test was employed to assess learning and memory. The levels of brain thio-barbituric acid reactive species (TBARS) and reduced glutathione (GSH) were estimated to assess degree of oxidative stress. Brain acetylcholinesterase enzyme (AChE) activity was also measured. Scopolamine/streptozotocin administration induced significant impairment of learning and memory in mice as indicated by marked decrease in Morris water-maze performance. Scopolamine/streptozotocin administration also produced a significant enhancement of brain AChE activity and brain oxidative stress (an increase in TBARS and a decrease in GSH) levels. Treatment of erythropoietin (500 and 1,000 IU/Kg i.p.) significantly reversed scopolamine- as well as streptozotocin-induced learning and memory deficits along with attenuation of those-induced rise in brain AChE activity and brain oxidative stress levels. It may be concluded that erythropoietin exerts a beneficial effect in memory deficits of mice possibly through its multiple actions including potential anti-oxidative effect.

Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage

  • Sung, Chang-Hyun;Hong, Jeum-Kyu
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.243-251
    • /
    • 2010
  • Nitric oxide (NO) has been shown to be involved in diverse physiological processes in microbes, animals and plants. In this study, the involvement of NO in the development and possible roles in oxidative stress protection of Chinese cabbage (Brassica rapa subsp. pekinensis cv. Samrack-ulgari) seedlings were investigated. Exogenous application of sodium nitroprusside (SNP) retarded root elongation, while increasing lateral root formation of Chinese cabbage. Plants showed no signs of external stress due to SNP application in true leaves. Cotyledons of 3-week-old Chinese cabbage plants were found to be highly sensitive to SNP application. Treated cotyledons displayed rapid tissue collapse and associated cell death. Although SNP application reduced root growth under normal growth conditions, it also enhanced methyl viologen (MV)-mediated oxidative stress tolerance. Analysis of SNP application to Chinese cabbage leaf disks, revealed SNP-induced tolerance against oxidative stresses by MV and $H_2O_2$, and evidence includes prevention of chlorophyll loss, superoxide anion (${O_2}^-$) accumulation and lipid peroxidation. This report supports a role for nitric oxide in modulating early seedling development, programmed cell death and stress tolerance in Chinese cabbage.