• Title/Summary/Keyword: oxidation time

Search Result 1,543, Processing Time 0.025 seconds

Formation and Inhibition of Cholesterol Oxidation Products (COPs) in Foods; An Overview (식품 내 콜레스테롤 산화 생성물(COPs)의 생성 및 억제; 개요)

  • Joo-Shin Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1163-1175
    • /
    • 2023
  • Cholesterol is prone to oxidation, which results in the formation of cholesterol oxidation products (COPs). This occurs because it is a monounsaturated lipid with a double bond on C-5 position. Cholesterol in foods is mostly non-enzymatically oxidized by reactive oxygen species (ROS)-mediated auto-oxidative reaction. The COPs are found in many common foods of animal-origin and are formed during their manufacture process. The formation of COPs is mainly related to the temperature and the heating time the food is processed, storage condition, light exposure and level of activator present such as free radical. The level of COPs in processed foods could reach up to 1-10 % of the total cholesterol depending on the foods. The most predominant COPs in foods including meat, eggs, dairy products as well as other foods of animal origin were 7-ketocholesterol, 7 α-hydroxycholesterol (7α-OH), 7β-hydroxycholesterol (7β-OH), 5,6α-epoxycholesterol (5,6α-EP), 5,6β-epoxycholesterol (5,6β-EP), 25-hydoxycholesterol (25-OH), 20-hydroxycholesterol (20-OH) and cholestanetriol (triol). They are mainly formed non-enzymatically by cholesterol autoxidation. The COPs are known to be potentially more hazardous to human health than pure cholesterol. The procedure to block cholesterol oxidation in foods should be similar to that of lipid oxidation inhibition since both cholesterol and lipid oxidation go through the same free radical mechanism. The formation of COPs in foods can be stopped by decreasing heating time and temperature, controlling storage condition as well as adding antioxidants into food products. This review aims to present, discuss and respond to articles and studies published on the topics of the formation and inhibition of COPs in foods and key factors that might affect cholesterol oxidation. This review may be used as a basic guide to control the formation of COPs in the food industry.

A Molecular Dynamics Study of the Stress Effect on Oxidation Behavior of Silicon Nanowires

  • Kim, Byeong-Hyeon;Kim, Gyu-Bong;Park, Mi-Na;Ma, U-Ru-Di;Lee, Gwang-Ryeol;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.499-499
    • /
    • 2011
  • Silicon nanowires (Si NWs) have been extensively studied for nanoelectronics owing to their unique optical and electrical properties different from those of bulk silicon. For the development of Si NW devices, better understanding of oxidation behavior in Si NWs would be an important issue. For example, it is widely known that atomic scale roughness at the dielectric (SiOx)/channel (Si) interface can significantly affect the device performance in the nano-scale devices. However, the oxidation process at the atomic-scale is still unknown because of its complexity. In the present work, we investigated the oxidation behavior of Si NW in atomic scale by simulating the dry oxidation process using a reactive molecular dynamics simulation technique. We focused on the residual stress evolution during oxidation to understand the stress effect on oxidation behavior of Si NWs having two different diameters, 5 nm and 10 nm. We calculated the charge distribution according to the oxidation time for 5 and 10 nm Si NWs. Judging from this data, it was observed that the surface oxide layer started to form before it is fully oxidized, i.e., the active diffusion of oxygen in the surface oxide layer. However, it is well-known that the oxide layer formation on the Si NWs results in a compressive stress on the surface which may retard the oxygen diffusion. We focused on the stress evolution of Si NWs during the oxidation process. Since the surface oxidation results in the volume expansion of the outer shell, it shows a compressive stress along the oxide layer. Interestingly, the stress for the 10 nm Si NW exhibits larger compressive stress than that of 5 nm Si NW. The difference of stress level between 5 an 10 anm Si NWs is approximately 1 or 2 GPa. Consequently, the diameter of Si NWs could be a significant factor to determine the self-limiting oxidation behavior of Si NWs when the diameter was very small.

  • PDF

Oxidation Behaviors of Porous Ferritic Stainless Steel Support for Metal-supported SOFC

  • Moon, I.J.;Lee, J.W.;Cho, H.J.;Choi, G.M.;Sohn, H.K.
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.196-200
    • /
    • 2010
  • Recently porous metal has been used as supporting metal in planar type SOFC. In order to search optimum alloys for porous metal support and estimate the stability of metal-supported SOFC at high temperature, it is necessary to investigate the oxidation behaviors of porous material for metal support in comparison with dense material. Oxidation tests of porous and dense stainless steels were conducted at $600^{\circ}C$ and $800^{\circ}C$. Since the specific surface area of porous material is much larger than that of dense material, surface area should be considered in order to compare the oxidation rate of porous stainless steel with that of dense stainless steel. The specific surface area of porous body was measured using image analyzer. The weight gain of porous stainless steel was much greater than those of dense stainless steels due to its larger specific surface area. considering the specific surface area, the oxidation rate of porous stainless steel is likely to be the same as that of dense stainless steel with the same surface area. The change in chromium content in stainless steel during oxidation was also investigated. The experimental result in chromium content in stainless steel during oxidation corresponded with the calculated value. While the change in chromium content in dense stainless steel during oxidation is negligible, chromium content in porous stainless steel rapidly decreases with oxidation time due to its large specific surface area. The significant decrease in chromium content in porous stainless steel during oxidation may affect the oxidation resistance of porous stainless steel support and long term stability of metal-supported SOFC.

Effects of Packaging Methods on Color and Lipid Oxidation of Duck Meat during Cold Storage (오리고기의 포장방법이 냉장저장 중 육색과 지방 산화에 미치는 영향)

  • Kang G.H.;Jeong T.C.;Yang H.S.;Kim S.H.;Jang B.G.;Kang H.S.;Lee D.S.;Lee S.J.;Joo S.T.;Park G.B.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • The effects of aerobic and vacuum packaging of fresh duck meat on meat qualities including color, cooking loss, shear force, lipid oxidation and fatty acid composition during cold storage were investigated. The result showed that pH of the samples were decreased as increasing storage time, and leg meat showed significantly (p<0.05) higher than breast meat. Redness showed significantly (p<0.05) higher value in breast meat compared to leg meat as increasing the storage time. However, TBARS value showed significantly (p<0.05) higher in breast meat compared to leg meat as increasing storage time. This result suggested that the lower pH affected lipid oxidation and discoloration of the meat samples. However, fatty acid composition of 1 day storage time showed that aerobic packaging of leg meat had lower (p<0.05) ratio of palmitic acid and higher (p<0.05) ratio of linoliec acid, whereas vacuum packaging of leg meat showed higher (p<0.05) ratio of palmitic acid at 7 days storage time than other treatments. Therefore, this data speculated that saturated fatty acid like palmitic acid and unsaturated fatty acid like linoleic acid were affected by lipid oxidation at different storage time. Finally, aerobic packaging meat accelerated lipid oxidation compared to vacuum packaging meat, hence self life was no longer better than vacuum packaging meat without relation of different type of meat from duck.

A Study on Behavior of Steel Surface Oxidation with Characteristics of the Combustion (연소 특성에 따른 강판 표면 산화거동에 관한 연구)

  • KIM, SEULGI;KANG, KIJOONG;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.392-400
    • /
    • 2017
  • An experimental study was conducted to investigate behavior of steel surface oxidation with characteristics of the combustion. The excess entalphy combustion in porous media system was applied to implement the direct radiation heating system. The surface oxidation thickness (SOT) of fuel-lean was thicker than the SOT of fuel-rich. Also, the SOT was increased by increasing residence time. Detailed explanations were given by SEM and EDS analysis.

Removal of Bisphenol-A using Rotating Photocatalytic Oxidation Drum Reactor (RPODR)

  • Son, Hee-Jong;Jung, Chul-Woo;Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.197-202
    • /
    • 2008
  • This study evaluated the photocatalytic oxidation of BPA using the RPOD reactor under various conditions. This study found that the RPOD was effective for BPA degradation. It could reduce 1 mg/L of BPA by half within 5 min under the optimum conditions. According to the study results, $TiO_2$ coating was important for the BPA oxidation. As the coating thickness increased, the removal efficiency improved. The light source, the light intensity and the drum rotating speed were important for the oxidation. The UV light was more effective for the BPA degradation than the visible light. The removal efficiency improved with increasing intensity. As the drum speed increased, the removal efficiency improved. The maximum speed was 240 rpm in this study. Addition of air and nitrogen was not beneficial for the BPA degradation in this study probably due to enough oxygen in the water.

A Study on Nucleation, Growth and Shrinkage of Oxidation Induced Stacking Faults (OSF) -Part 1: Nucleation and Thermal Behavior of Oxidation Induced Stacking Faults(OSF) (산화 적층 결합의 생성, 성장 및 소멸에 관한 연구 - 제1부:산화 적층 결함의 생성과 열적 거동)

  • 김용태;김선근;민석기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.759-766
    • /
    • 1988
  • the effect of heat treatment in oxygen ambient on the nucleation and growth of oxidation induced stacking faults(OSF) in n-type(100)silicon wafer has been investigated. The growth of OSF is determind as a function of oxygen concentration in silicon wafer, heat treatment time and temperature, and the activation energy for the growth of OSF can be obtained from the growth kinetics. The activation energies are respectively 2.66 eV for dry oxidation and 2.37 eV for wet oxidation. In this paper, we have also studied the structural feature of OSF with the comparison of optical microscopic morphology and crystalline structure.

  • PDF

Antioxidative Activity on Human Low Density Lipoprotein(LDL) Oxidation by Pentagalloic Acid

  • Ryu, Beung-Ho;Kim, Hee-Sook;Moon, Yoon-Hee;Yang, Seong-Taek
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.366-371
    • /
    • 2000
  • The aim of this study was to investigate the efficiency of the pentagalloic acid compound in inhibiting the metal ions and cell lines that mediate in low density lipoprotein (LDL) oxidation. Pentagalloic acid prolonged the lag time preceeding the onset of conjugated diene formation. In chemically induced LDL oxidation by Cu$^2$(sup)+ plus hydrogen peroxide or peroxyl radical generated by 2, 2-azo-vis (2-amidino propane) hydrochloride (AAPH), pentagalloic acid inhibited LDL oxidation as monitored by measuring the thiobarbituric acid reactive substances(TBARS), malondialdehyde(MDA), and gel electrophoretic mobility. The physiological relevance of the antioxidative activity was validated at the cellular level where pentagalloic acid inhibited mouse macrophage J774 and endothelial cell-mediated LDL oxidation. When compared with several other antioxidants, pentagalloic acid showed a much higher ability than naturally occuring antioxidants, ${\alpha}$-tocopherol and ascorbic acid, and the synthetic antioxidant, probucol.

  • PDF

Processing and Characterization of a Direct Bonded SOI using SiO$_2$ Thin Film (SiO$_2$ 박막을 이용한 SOI 직접접합공정 및 특성)

  • 신동운;최두진;김긍호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.535-542
    • /
    • 1998
  • SOI(silicon oninsulator) was fabricated through the direct bonding of a hydrophilized single crystal Si wafer and a thermally oxidized SiO2 thin film to investigate the stacking faults in silicon at the Si/SiO2 in-terface. At first the oxidation kinetics of SiO2 thin film and the stacking fault distribution at the oxidation interface were investigated. The stacking faults could be divided into two groups by their size and the small-er ones were incorporated into the larger ones as the oxidation time and temperature increased. The den-sity of the smaller ones based critically lower eventually. The SOI wafers directly bonded at the room temperature were annealed at 120$0^{\circ}C$ for 1 hour. The stacking faults at the bonding and oxidation interface were examined and there were anomalies in the distributions of the stacking faults of the bonded region to arrange in ordered ring-like fashion.

  • PDF

The oxidation of Fe-(21.8, 24.1, 27.2)%Al intermetallics (Fe-(21.8, 24.1, 27.2)%Al 금속간 화합물의 고온 산화)

  • 김기영;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • Pure $Fe_3$Al alloys with three different compositions of Fe-21.8%Al, Fe-24.1%Al and Fe-27.2%Al were prepared by vacuum induction melting followed by homogenization and hot forging. The long-time oxidation behavior of the prepared alloys was studied at 1073, 1273 and 1473k in air. The oxidation resistance greatly increased with an increase in Al contents. Thin and uniform oxide scales were always formed on Fe-27.2%Al, while thick and fragile oxide scales were formed on Fe-(21.8, 24.1%)Al. Internal oxidation was observed in Fe-(21.8, 24.1%)Al, when oxidized above 1273K. The major oxidation product of all the oxidized alloys was always $\alpha$-$Al_2$$O_3$.

  • PDF