• Title/Summary/Keyword: oxidation stability model

Search Result 24, Processing Time 0.021 seconds

Oxidation Stability Model of Fish Oil (어유의 산화안정성 예측)

  • Jeong-Hwa Hong;Jin-Woo Kim;Dae-Seok Byun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.384-388
    • /
    • 1995
  • High content of polyunsaturated fatty acid in fish oil makes it very susceptible to oxidation, which prevent fish oil from successful application to food processing or functional foods. To resolve this problem, oxidation stability model of fish oil was developed using the following differential equation : $dp/dt=k{\cdot}p(t){\cdot}[P_{max}\;-\;p(t)]$. This differential equation can be intergrated using analytical techniques to give : $p(t)=P_{max}/[1\;+\;[(P_{max}/P_{(0)})\;-\;-1]{\cdot}EXP(-K_p{\cdot}t)]$. At 50, 60, 70 and $80^{\circ}C,\;K_p$ were 0.00535, 0.01345, 0.02516 and 0.04675, respectively. The proposed model was well agreed with the measured data except for some minor deviations. In addition, $K_p$ was expressed as a function of temperature : $K_p=(1/P_{max})EXP\;[1\;-\;(8148/T)+20.1]$. Where T is absolute temperature($^{o}K$).

  • PDF

Impacts of post-mortem ageing prior to freezing on technological and oxidative properties of coarse ground lamb sausage in a model system

  • Choe, Juhui;Kim, Hyun-Wook;Farouk, Mustafa M.;Kim, Yuan H. Brad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1021-1028
    • /
    • 2017
  • Objective: The objective of this study was to evaluate the effects of ageing time of lamb loins prior to freezing on technological characteristics and oxidation stability of coarse ground lamb loin sausage using in a model system. Methods: Lamb loins (M. longissimus lumborum, n = 25) were aged at $-1.5^{\circ}C$ for 0, 1, 2, 3, and 8 wk and then frozen for the remaining days (a total of 30 wk). The aged/frozen/thawed lamb loins were ground, and model sausages were formulated with 75% aged/frozen/thawed lamb loin, 25% water, 1.5% sodium chloride (NaCl) and 0.3% sodium tripolyphosphate. The pH and thaw/purge loss of aged/frozen/thawed lamb loins were evaluated, and protein functionality (protein solubility and emulsifying capacity), water-holding capacity and textural properties of model sausages were determined. Cooked model sausages were vacuum-packaged in a plastic bag and displayed under continuous fluorescent natural white light ($3^{\circ}C{\pm}1^{\circ}C$). Colour and lipid oxidation of the cooked model sausages were evaluated on 0 and 21 d of display storage. Results: Ageing prior to freezing had no impact on pH and purge/thaw loss of lamb loins and the colour of cooked sausages (p>0.05) made from the loins. Lamb loins aged for at least 3 wk prior to freezing numerically improved total and myofibrillar protein solubilities (p>0.05) and emulsion activity index (p = 0.009) of meat batter, but decreased cooking loss (p = 0.003) and lipid oxidation (p<0.05) of model sausages. Conclusion: This study suggests that post-mortem ageing of raw meat prior to freezing could improve water-holding capacity and lipid oxidative stability of sausage made from the meat.

Effects of Erythrosine on the Cholesterol Oxidative Stability in an Aqueous Model System (수용성 모형계에서 콜레스테롤의 산화 안정성에 대한 Erythrosine의 영향)

  • Chung, Man-Gon;Kim, Jong-Seung;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.197-202
    • /
    • 1996
  • The effects of erythrosine on the oxidative stability of cholesterol in an aqueous model system were studied by depleted headspace oxygen and cholesterol oxidation products (COP). As the oncentration of erythrosine was increased, headspace oxygen depletion, 7-COP and total COP increased during storage at $25^{\circ}C$ for 50 hours under the fluorescent light. As the intensity of fluorescent light was increased, amounts of headspace oxygen depleted and COP formed in an aqueous cholesterol dispersion containing erythrosine also increased. Addition of ${\alpha}-,\;{\delta}-$, mixed-tocopherol and ${\beta}-carotene$ resulted in the enhanced oxidative stability of an aqueous cholesterol dispersion containing erythrosine during the fluorescent light storage.

  • PDF

Development of Hydrophobically Modified Casein Derivative-Based Delivery System for Docosahexaenoic Acids by an Acid-Induced Gelation

  • Ho-Kyung Ha;Dan-Bi Woo;Mee-Ryung Lee;Won-Jae Lee
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.220-231
    • /
    • 2023
  • Although omega-3 fatty acids including docosahexaenoic acid (DHA) contain various health-promoting effects, their poor aqueous solubility and stability make them difficult to be induced in dairy foods. The aims of this research were to manufacture casein derivative-based delivery system using acid-induced gelation method with glucono-σ-lactone and to investigate the effects of production variables, such as pH and charged amount of linoleic acid, on the physicochemical properties of delivery systems and oxidative stability of DHA during storage in model milk. Covalent modification with linoleic acid resulted in the production of casein derivatives with varying degrees of modification. As pH was reduced from 5.0 to 4.8 and the charged amount of linoleic acid was increased from 0% to 30%, an increase in particle size of casein derivative-based delivery systems was observed. The encapsulation efficiency of DHA was increased with decreased pH and increased charged amount of linoleic acid. The use of delivery system for DHA resulted in a decrease in the development of primary and secondary oxidation products. An increase in the degree of modification of casein derivatives with linoleic acid resulted in a decrease in the formation of primary and secondary oxidation products than of free DHA indicating that delivery systems could enhance the oxidative stability of DHA during storage in model milk. In conclusions, casein derivatives can be an effective delivery system for DHA and charged amount of linoleic acid played a key role determining the physicochemical characteristics of delivery system and oxidative stability of DHA.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

COMPARISON BETWEEN $TIUNITE^{TM}$ AND ANOTHER OXIDIZED IMPLANT USING THE RABBIT TIBIA MODEL

  • Yeo, In-Sung;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.339-344
    • /
    • 2007
  • Statement of problem. Various anodic oxidation techniques can be applied to dental implant surfaces. But the condition for optimal anodized surfaces has not been described yet. Purpose. The purpose of this investigation was to compare an implant that was oxidized by another method with $TiUnite^{TM}$ through resonance frequency analysis and histomorphometry. Material and methods. Turned (control), $TiUnite^{TM}$ and another oxidized fixtures, which used $Ca^{2+}$ solution for anodic oxidation, were placed in the tibiae of 5 New Zealand White rabbits. The bone responses were evaluated and compared by consecutive resonance frequency analysis once a week for 6 weeks and histomorphometry after a healing period of 6 weeks. Results. At the first week, both oxidized implants showed significantly higher implant stability quotient (ISQ) values than the control. No significant differences in resonance frequency analysis were found between the two oxidized groups for 6 weeks. The means and standard deviations of bone-to-implant contact (BIC) ratios were $71.0{\pm}4.2$ for $TiUnite^{TM}$, $67.5{\pm}10.3$ for the $Ca^{2+}$-based oxidation fixture, $22.8{\pm}6.5$ for the control. Both oxidized implants were significantly superior in osseointegration to the turned one. There was, however, no statistically significant difference between the two oxidized implants. Conclusion. $TiUnite^{TM}$ and the $Ca^{2+}$-based oxidation fixture showed superior early bone response than the control with respect to resonance frequency analysis and histomorphometry. No significant differences between the oxidized groups, however, were found in this investigation using the rabbit tibia model.

Growth, Structure, and Stability of Ag on Ordered ZrO2(111) Films

  • Han, Yong;Zhu, Junfa;Kim, Ki-jeong;Kim, Bongsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.204.2-204.2
    • /
    • 2014
  • Among various metal oxides, ZrO2 is of particular interests and has received widespread attention thanks to its ideal mechanical and chemical stability. As a cheap metal, Ag nanoparticles are also widely used as catalysts in ethylene epoxidation and methanol oxidation. However, the nature of Ag-ZrO2 interfaces is still unknown. In this work, the growth, interfacial interaction and thermal stability of Ag nanoparticles on ZrO2(111) film surfaces were studied by low-energy electron diffraction (LEED), synchrotron radiation photoemission spectroscopy (SRPES), and X-ray photoelectron spectroscopy (XPS). The ZrO2(111) films were epitaxially grown on Pt(111). Three-dimensional (3D) growth model of Ag on the ZrO2(111) surface at 300 K was observed with a density of ${\sim}2.0{\times}1012particles/cm2$. The binding energy of Ag 3d shifts to low BE from very low to high Ag coverages by 0.5 eV. The Auger parameters shows the primary contribution to the Ag core level BE shift is final state effect, indicating a very weak interaction between Ag clusters and ZrO2(111) film. Thermal stability experiments demonstrate that Ag particles underwent serious sintering before they desorb from the zirconia film surface. In addition, large Ag particles have stronger ability of inhibiting sintering.

  • PDF

Effects of Water Activity and Light on the Oxidation of Carrot Carotenoids (당근 카로티노이드의 자동산화에 미치는 수분활성도 및 광선의 영향)

  • Song, Eun-Seung;Kim, Hae-Gyoung;Song, Yeong-Ok;Jeon, Yeong-Soo;Cheieh, Hong-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.775-779
    • /
    • 1993
  • The effects of water activity and light on the oxidation of carotenoid were studied using both the model systems of carrot lipids and freeze dried carrot. Autoxidation of crude lipids from the freeze dried carrot and the stability of carotenoids in controlled systems varing water activities and/or lights were examined. The degree of autoxidation of crude lipid stored at $30^{\circ}C$ for 16 days was significant(p< 0.05) and 71.8% destruction of carotenoid in the crude lipids were observed. When the powdered solid models of freeze dried carrot were stored at $30^{\circ}C$ for 35 days under various water activities and the presence of light, the maximum stability of carotenoid was found at $a_{w}$ 0.42 and the damaging effect of lights on the stability of carotenoid was significant (p<0.05). The absoprtion spectra of carotenoids changed according to the degree of oxidation, but shifts of the maximum wavelength was not observed.

  • PDF

Production of Lipase-catalyzed Structured Lipid from Olive Oil with Omega-3 Polyunsaturated Fatty Acids

  • Kahveci, Derya;Can, Ash;Ozcelik, Beraat
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.79-83
    • /
    • 2009
  • Acidolysis of olive oil with omega-3 (n-3) polyunsaturated fatty acids (PUFAs) was carried out to produce a structured lipid. Novozym $435^{(R)}$ from Candida antarctica was used as the biocatalyst. Response surface methodology (RSM) was used to determine optimum conditions for lipase-catalyzed enrichment of olive oil. Three factors, 5 levels, central composite design was used. The effects of incubation time, temperature, and substrate mole ratio on incorporation ratio (n-3 fatty acids/total fatty acids, %) were investigated. From the evaluation of response surface graphs, the optimal conditions for incorporation of long chain n-3 PUFAs into olive oil were $40-60^{\circ}C$ for temperature, 30-45 hr for reaction time, and 3:1-5:1 (n-3 fatty acids/olive oil) for substrate mole ratio. Experiments conducted under optimized conditions predicted by the model equation obtained from RSM yielded structured lipids with 50.8% n-3 PUFAs. This value agreed well with that predicted by the model. Oxidative stability tests showed that the product was more susceptible to oxidation than unmodified olive oil. Antioxidant addition improved the oxidative stability of the product.

Changes in Quality Characteristics of Pork Patties Containing Antioxidative Fish Skin Peptide or Fish Skin Peptide-loaded Nanoliposomes during Refrigerated Storage

  • Bai, Jing-Jing;Lee, Jung-Gyu;Lee, Sang-Yoon;Kim, Soojin;Choi, Mi-Jung;Cho, Youngjae
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.752-763
    • /
    • 2017
  • Marine fish skin peptides (FSP) have been widely studied due to their antioxidant and antimicrobial properties. We aimed to use a natural antioxidant, FSP, to replacing synthetic preservatives in a pork patty model, which is safer for human body. Moreover, nano-liposome technology can be applied for masking the fishy smell and improving the stability of this peptide. Therefore, in this study, the effects of FSP and FSP-loaded liposomes (FSPL) on pork patty were evaluated through the tests of thiobarbituric acid reactive substances (TBARS), color, cooking loss, texture, volatile basic nitrogen (VBN), and the pH value, during 14 d of refrigerated ($4^{\circ}C$) storage. The results showed that all FSP-treated patties had lower TBARS values than control patties, which indicated an inhibitory effect of FSP on lipid oxidation. This effect in the patties depended on the FSP concentration. However, FSPL-treated patties showed significantly higher and undesirable TBARS values compared to the control, and this effect depended on the FSPL concentration. None of the physicochemical results showed remarkable changes except the pH and VBN values. Therefore, this study provides evidence that FSP has great potential to inhibit the lipid oxidation of pork patties and is capable of maintaining the quality and extending the shelf life. However, it is necessary to study the application of FSP treatments greater than 3% to improve the antioxidant effect on pork patties and search for other coating materials and technology to reduce the drawbacks of FSP.