• Title/Summary/Keyword: oxidation speed

Search Result 141, Processing Time 0.022 seconds

A Study on Characteristics of an Integrated Urea-SCR Catalytic Filter System for Simultaneous Reduction of Soot and NOX Emissions in ECU Common-rail Diesel Engines (ECU 커먼레일 디젤기관에 있어서 매연 및 NOX 배출물 동시 저감용 일체형 요소-SCR 촉매필터 시스템의 특성에 관한 연구)

  • Bae, Myung-Whan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.111-120
    • /
    • 2014
  • The aim of this study is to develop an integrated urea-SCR catalytic filter system for reducing soot and $NO_X$ emissions simultaneously in diesel engines. In this study, the characteristics of exhaust emissions relative to reactive activation temperature under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with the integrated urea-SCR $MnO_2-V_2O_5-WO_3/TiO_2/SiC$ catalytic filter system operating at three kinds of engine speeds. The urea-SCR reactor is used to reduce $NO_X$ emissions, and the catalytic filter system is used to reduce soot emissions. The reactive activation temperature is very important for reacting a reducing agent with exhaust emissions. The reactive activation temperatures in this experiment is applied to 523, 573 and 623 K. The fuel is sprayed by the pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the $NO_X$ conversion rate is the highest as 83.9% at the reactive activation temperature of 523 K in all experimental conditions of engine speed and load, and the soot emissions shown by the average reduction rate of approximately 93.3% are almost decreased below 0.6% in all experimental conditions regardless of reactive activation temperatures. Also, the THC and CO emissions by oxidation reaction of Mn, V and Ti are shown in the average reduction rates of 70.3% and 38% regardless of all experimental conditions.

Wastewater Treatment by using a Rotating Photocatalitic Oxidation Disk System (회전광촉매 시스템에 의한 폐수처리)

  • Chung, Ho Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.497-502
    • /
    • 2009
  • The wastewater treatment by photocatalyst decomposes pollutants directly in water, and it is easy to decompose indecomposable organics and inorganic. and Especially, it has an advantage that there is no secondary production of pollutants. However, there will be many problems which are generated depending on the type of photocatalyst. The type of rotating photocatalyst minimizes previous problems, and advanced oxidation processes is possible by the application of rotating disc method. The consideration of the characteristics about various designs and operation factors is needed for the application of rotating photocatalyst system. In this study, rotating photocatalyst was manufactured for rotating disc method by fixing of $TiO_2$. The operation factors were derived for the wastewater treatment by the reaction of rotating photocatalyst. The contained quantity of $TiO_2$ was limited about 70%. The more the contained quantity of $TiO_2$ was increased, the more the treatment rate was continually increased. The optimum rotating photocatalyst was R4, and the contained quantity of $TiO_2$ was 36.8%. The more the exposed amount of UV is increased, the more the decomposition effect of TCODcr was continually increased. However, the adequate strength of light source must be determined by the consideration of economical efficiency. The more the speed of rotating photocatalyst is increased, the more treatment efficiency was increased. When UV lamp was not submerged in reactor, the wastewater treatment was efficient in the order of the depth of water 50%, 30%, 10%, 70%, 100%. This study is a basic research for the development of a system which treats organics in solar light.

Contact Resistance and Leakage Current of GaN Devices with Annealed Ti/Al/Mo/Au Ohmic Contacts

  • Ha, Min-Woo;Choi, Kangmin;Jo, Yoo Jin;Jin, Hyun Soo;Park, Tae Joo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • In recent years, the on-resistance, power loss and cell density of Si power devices have not exhibited significant improvements, and performance is approaching the material limits. GaN is considered an attractive material for future high-power applications because of the wide band-gap, large breakdown field, high electron mobility, high switching speed and low on-resistance. Here we report on the Ohmic contact resistance and reverse-bias characteristics of AlGaN/GaN Schottky barrier diodes with and without annealing. Annealing in oxygen at $500^{\circ}C$ resulted in an increase in the breakdown voltage from 641 to 1,172 V for devices with an anode-cathode separation of $20{\mu}m$. However, these annealing conditions also resulted in an increase in the contact resistance of $0.183{\Omega}-mm$, which is attributed to oxidation of the metal contacts. Auger electron spectroscopy revealed diffusion of oxygen and Au into the AlGaN and GaN layers following annealing. The improved reverse-bias characteristics following annealing in oxygen are attributed to passivation of dangling bonds and plasma damage due to interactions between oxygen and GaN/AlGaN. Thermal annealing is therefore useful during the fabrication of high-voltage GaN devices, but the effects on the Ohmic contact resistance should be considered.

Effect of Surface Modification by Friction Stir Process on Overlap Welded Inconel 718 Alloy (육성용접된 Inconel 718 합금의 마찰교반을 이용한 개질처리 효과)

  • Song, Kuk Hyun;Hong, Do Hyeong;Yang, Byung Mo
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.501-509
    • /
    • 2013
  • To evaluate the development of the microstructure and mechanical properties on surface modified and post-heattreated Inconel 718 alloy, this study was carried out. A friction stir process as a surface modification method was employed, and overlap welded Inconel 718 alloy as an experimental material was selected. The friction stir process was carried out at a tool rotation speed of 200 rpm and tool down force of 19.6-39.2 kN; post-heat-treatment with two steps was carried out at $720^{\circ}C$ for 8 h and $620^{\circ}C$ for 6 h in vacuum. To prevent the surface oxidation of the specimen, the method of using argon gas as shielding was utilized during the friction stir process. As a result, applying the friction stir process was effective to develop the grain refinement accompanied by dynamic recrystallization, which resulted in enhanced mechanical properties as compared to the overlap welded material. Furthermore, the post-heat-treatment after the friction stir process accelerated the formation of precipitates, such as gamma prime (${\gamma}^{\prime}$) and MC carbides, which led to the significant improvement of mechanical properties. Consequently, the microhardness, yield, and tensile strengths of the post-heat-treated material were increased more than 110%, 124% and 85 %, respectively, relative to the overlap welded material. This study systematically examined the relationship between precipitates and mechanical properties.

Aerosol Chemistry in the Marine Environment: Inference of Inter-logic Relationships from the Concentrations and Ratios of Sonic Constituents (해양환경의 에어로졸 화학- 농도와 함량비를 이용한 이온성분간의 관계에 대한 추론)

  • 김기현;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.143-152
    • /
    • 1998
  • The aerosol concentrations of ionic components were measured on a daily basis from a coastal monitoring site located at Kosan, Cheju Island from 26 September to 5 October 1997 as a field-intensive for a LRTAP project The chemical species we investigated include most of important inorganic species (i.e., Cl-, NO3-, F-, SO42-, Na+, NH4+, and K+) and some organic species (i.e. formats, acetate, and methanesulfonate (MSA) ions). The concentration data of those important inorganic and organic species obtained during this study were evaluated to properly address their chemical and physical characteristics. Most of major inorganic components including sulfate, sodium, chloride, and potassium ions exhibited very conservative relationships with each other such that the concentration ratios of any pair are quite analogous to that of seawater ratio. Since the oceans serve as the major sources of ionic constituents, their concentration changes appear to be senstively reflected by the factors affecting air-sea processes such as an increase in wind speed or changes in wind direction. A comparative analysis of sulfur-containing species such as seasalt (SS) and nonseasalt (NSS) sulfate and MSA were also made to assess the factors influencing the S cycling. An evaluation of NSS/SS ratios suggests that most of sulfate be associated with NSS fraction rather than 55 one. The finding of lower MSA/NSS-SO42- ratio along with a line of physical evidence such as intrusion of anthropogenically affected air mass suggests that the oxidation of S species have been promoted under the conditions encountered during the study period. Finally, the concentration data of carboxylic species (such as formats and acetate ions) were also analyzed. Although the existence of temporal trends were difficult to assess, these data indicate that their contribution to the precipitation acidity may not be significant enough.

  • PDF

A study on the Rapid Processing of Hydrolyzed Anchovy Paste and Its Quality Stability (효소분해법에 의한 페이스트형 속성 멸치젓의 제조 및 품질에 관한 연구)

  • HAN Bong-Ho;KIM Sang-Ho;CHO Hyun-Duk;CHO Man-Gi;BAE Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 1997
  • A study on the processing method of anchovy hydrolysate paste (AHP) was carried out to improve the sensory quality of salted and fermented fish. Homogenized whole anchovy was hydrolyzed using commercial pretenses, Complex enzyme-2000 (CE, Pacific Chem. Co.) and Alcalase (AL, Novo), in a cylindrical vessel with 4 baffle plates and 6-bladed turbine impeller. Optimal pH, temperature, and enzyme concentration for the hydrolysis with CE and AL were $7.0,\;52^{\circ}C,\;7\%$, and $8.0,\;60^{\circ}C,\;6\%$, respectively. The rational amount of water for homogenization, agitation speed, and hydrolyzing time were $100\%\;(w/w)$, 100 rpm, and 210 min, respectively. To make the hydrolysate to paste type, it was effective to mix the additives, such as starch, soybean protein, agar, and carrageenan gum to the hydrolysate 5 min before the end of boiling at $100^{\circ}C$ for 30 min. Minimal NaCl concentration for long-term preservation was $15\%$, and this could be reduced to $12\%$ by adding $5\%$ of KCl. yield of the AHP based on the total nitrogen content was $94.6\~97.0\%,\;and\;86.0\~89.2\%$, of the nitrogen was amino nitrogen. Salinity, pH and histamine content of the AHP prepared with $12\%$ NaCl and $5\%$ KCl were $9.3\~9.9\%,\;6.1\~6.2$, and below 13 mg/100 g, respectively. The AHP was stable at $26{\pm}3^{\circ}C$ for 60 days on bacterial growth, and addition of $0.05\%$ of rosemary (Herbalox) extract was effective to inhibit the lipid oxidation of the AHP during storage.

  • PDF

Improvement of uniformity in chemical vapor deposition of silicon carbide using CFD (탄화규소 화학기상증착 공정에서 CFD를 이용한 균일도 향상 연구)

  • Seo, Jin-Won;Kim, Jun-Woo;Hahn, Yoon-Soo;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.242-245
    • /
    • 2014
  • In order to increase the thickness uniformity in chemical vapor depositon of silicon carbide, we have carried out CFD studies for a CVD apparatus having a horizontally-rotated 3-stage susceptor. We deposited silicon carbide films of 3C-SiC phase showing quite uniform thickness between stages but not uniform one in the stage. The cause of this nonuniformity is thought to be originated from the high rotational speed. And the uniformity between stages can be further increased with the $120^{\circ}$ split type nozzles from CFD results. Through the formation of silicon carbide film on graphite substrates we can make oxidation-resistant and dust-free graphite components with high hardness for the semiconductor applications.

A Study on the Adsorption Characteristics of Phenol in the presence of Humic Acid Using Activated Carbon Fiber (섬유상활성탄소를 이용한 Humic Acid 공존시 페놀의 흡착특성에 관한 연구)

  • Tak, Seong-Jae;Seo, Seong-Wen;Kim, Seong-Sun;Kim, Jin-Man
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • Recently, our circumstances are threatened by an accident that leakage of under ground storage tank and illegal dumping of synthetic organic compounds at chemical plants and many treatment methods, Activated carbon adsorption, Ozonization, Membrane filtration and Photocatalystic oxidation, are developed to remove such a synthetic organic compounds. And it has reported that Activated carbon adsorption have a great removal efficiency to nondegradable matters and organic compounds which have a high molecular weight. Comparing with other adsorbents, Activated carbon adsorption have a worse efficiency when ad desorption speed is low. Thus improved type of adsorbents was invented and one of those is Activated Carbon Filter. The purpose of this study was getting information about adsorption characteristic phenol which can be applied Activated Carbon Fiber and Granular Activated Carbon. In detail, With comparing removal characteristics of phenol in the presence Humic Acid using Activated Carbon Fiber(ACF) and Granular Activated. Carbon(GAC), it is to certify an effective application of Activated Carbon Fiber. At the range of this study, Batch test, Isotherm adsorption test and Factorial analysis, following conclusion were obtained from the results of this study. Batch test was carried to know time of adsorption equilibrium. In this study about time of adsorption equilibrium by ACF was faster than GAC's, for developed micropore of ACF. From the result of phenol adsorption test, High removal rate of adsorption is shown at pH 5. The result of lsotherm adsorption test, it has represented that the Freundlich's isotherm is most suitable one in others, that a ACF's adsorption capacity is more excellent than GAC's. Adsorption of phenol exiting humic acid is decreased getting raised humic acid concentration. Since ACF's micropore is developed at this time, an effect of high molecular humic acid is lower. Factorial analysis was carried to know about Main effect which was injection dosage of adsorbent in the range of this study.

  • PDF

Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties (Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성)

  • Lee, Han-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

Molecular Characterization and Expression Analysis of the Peroxisome Proliferator Activated Receptor Delta (PPARδ) Gene before and after Exercise in Horse

  • Cho, Hyun-Woo;Shin, Sangsu;Park, Jeong-Woong;Choi, Jae-Young;Kim, Nam-Young;Lee, Woon-Kyu;Lee, Hak-Kyo;Song, Ki-Duk;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.697-702
    • /
    • 2015
  • While athletic abilities such as speed, endurance and recovery are important in the horse, genes related to these abilities have not been extensively investigated. Here, we characterized the horse peroxisome proliferator-activated receptor delta ($PPAR{\delta}$) gene and analyzed the expression of $PPAR{\delta}$ during exercise. $PPAR{\delta}$ is a known regulator of ${\beta}$-oxidation, muscle fiber transformation, and running endurance. Through evolutionary analysis using the synonymous and non-synonymous mutation ratio, it was revealed that positive selection occurred in the horse $PPAR{\delta}$ gene. Two important domains related to nuclear hormone receptors, C4 zinc finger and ligand binding domain, were also found to be conserved well in horse $PPAR{\delta}$. Horse $PPAR{\delta}$ was expressed ubiquitously in many tissues, but the expression level was various depending on the tissues. In the skeletal muscle, $PPAR{\delta}$ increased about 2.5 folds after 30 min of exercise. Unlike in muscle, the increase of $PPAR{\delta}$ expression was observed at 60 min but not 30 min of exercise in leukocytes. This finding might be useful for testing the endurance of horse using blood samples. Conclusively, the horse $PPAR{\delta}$ gene is evolutionarily conserved well and can be used as a biomarker of endurance in horse.