• Title/Summary/Keyword: oxidation rate

Search Result 1,543, Processing Time 0.03 seconds

Characteristics of distribution and decomposition of organic matters in stream water and sewage effluent (하천수와 하수처리장 방류수의 유기물 분포 및 분해 특성)

  • Seo, Hee-Jeong;Kang, Yeoung-Ju;Min, Kyoung-Woo;Lee, Kyoung-Seog;Seo, Gwang-Yeob;Kim, Seung-Ho;Paik, Kye-Jin;Kim, Seong-Jun
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • This study was performed to investigate the distribution and decomposition characteristics of organic matter in stream water and sewage effluent located in Gwangju. Average of dissolved organic carbon (DOC) to total organic carbon (TOC) ratio was approximately 73.9% in the Youngsan river system. The concentration of refractory dossolved carbon (RDOC) was 3.7 mg/L corresponding to 80.9% of the DOC. The ratio of recalcitrant organic carbon was relatively higher than that of biodegradable organic carbon in stream. Oxidation efficiencies in the stream were 45.0% for BOD, 63.0% for $COD_{Mn}$ and 106.5% for CODcr. In case of sewage effluent was 33.6%, 65.7% and 136.1% respectively. Mean decomposition rate ($K_d$) of Youngsan river mainstream, its tributary sites and sewage effluent were about $0.042\;day^{-1}$, $0.043\;day^{-1}$ and $0.028\;day^{-1}$, respectively and the difference was not significant between the mainstream and its tributary sites (t-test, p>0.05). $K_d$ of the sewage effluent was lower than that of stream water.

Characterization of Diethyl Phthalate(DEP) Removal using Ozone, UV, and Ozone/UV Combined Processes (오존, UV, 오존/UV 혼합 공정을 이용한 Diethyl Phthalate(DEP)의 제거특성 연구)

  • Jung, Yeon-Jung;Oh, Byung-Soo;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • Three candidate processes(ozone alone, UV alone and ozone/UV combined processes) were evaluated for the removal of diethyl phthalate(DEP). Of the candidates, the ozone/UV process showed the highest removal efficiency of DEP. To elucidate a major oxidant for DEP oxidation in the ozone/UV process, the effects of pH and hydroxyl radical($OH^{\circ}$) scavenger were investigated. As a result, it was found that $OH^{\circ}$ plays a important role for DEP elimination. Meanwhile, the direct reaction between ozone and DEP was negligible. Observing the pseudo first-order rate of DEP removal in ozone alone and ozone/UV processes, the different pattern was obtained from two processes. The ozone/UV process was well plotted following the pseudo first-order. but in the ozone alone process the rate was divided into fast and slow phases. DEP degradation characteristics in ozone alone and ozone/UV was also investigated by observing the HPLC spectrum. We detected unknown compounds that were guessed to DEP byproducts and observed the formation and disappearance of the unknown compounds according to reaction time. Observing of high removal of TOC in ozone/UV combined process, it was found that DEP and DEP byproducts are completely oxidized by ozone/UV combined process.

A study on degaradation stabilization of organic material through aerobic treatment before landfill of domestic waste (생활폐기물의 호기성처리를 통한 유기물 분해안정화에 관한 연구)

  • Lee, Hyun-Hee;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.79-89
    • /
    • 2003
  • The purpose of this study is to investigate appropriate environmental factors when domestic waste is decomposed as aerobic digestion. So stabilization degree was measured after the waste is mixed as certain rates and water content was controlled by 55% and 60%. Variation of VS showed food waste in reactors of number 1, 2, 3, 4 and 5 was decomposed fully except reactor of number 6. Decomposition degree of VS in reactors of number 1, 2, 3 and 4 was not different high because Vinyl and plastic inserted played role bulking agent in reactor number 1, 2, 3 and 4. In reactors, maximum temperature indicated $57{\sim}59^{\circ}C$ and temperatures in reactors 1, 2, 3 and 4 were higher and remained longer than in reactor 5 and 6 for 2~4 days. Variation of $CO_2$ was similar to that of VS. The reduction rate of water content was low because moisture generated by oxidation fever of microorganism did not evaporated well. pH was low in the beginning of the reaction however, as time passed, it increased slightly and remained regular pattern. EC and C/N showed the same pattern as pH. Settlement and weight reduction rates were similar to the factors above. Reactor 1, 2, 3, and 4 showed higher settlement and weight reduction rate than reactor 5 and 6.

  • PDF

Toxic action of N-dimethylphosphinothioyl carbofuran by oxidative activation process (산화적 활성화 과정을 통한 N-dimethoxyphosphinothioyl carbofuran의 독성발현)

  • Yang, Kyew-Wan;Lee, Seog-Jong;Kim, Song-Mun;Han, Dae-Sung;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.10-15
    • /
    • 1998
  • The bimolecular inhibition rate constants of carbofuran and N-dimethylphosphinothioyl carbofuran(PSC) to acetylcholinesterase(AChE) were $7.7{\times}10^{5}\;M^{-1}{\cdot}min^{-1}$ and $1.2{\times}10^{3}\;M^{-1}{\cdot}min^{-1}$, respectively. These results showed that PSC required a bioactivation process for its toxic action because it didn't inhibit the target enzyme effectively. The potency of PSC as an inhibitor of AChE increased when PSC and AChE were incubated with microsomes fortified with NADPH compared with microsome alone. Piperonyl butoxide(PBO) addition to these coupled systems greatly reduced the inhibition of the target enzyme by blocking the bioactivation process. In vivo inhibition study of mouse brain AChE, $I_{50}$ value for AChE was 28 mg/kg for PSC and the value increased to 57 mg/kg when PBO was pretreated. This result showed that cytochrome $P_{450}$ would also play a role in the bioactivation process of PSC in vivo. And conversioin of carbofuran from PSC was 55 % in a chemical oxidation system using meta-chloroperoxybenzoic acid. The oxidative activation of PSC to carbofuran was shown to be essential for showing its toxicological action and cytochrome $P_{450}$ was identified as an important enzyme which participated in this process.

  • PDF

Effects of Seeding Microorganisms, Hydrazine, and Nitrite Concentration on the Anammox Activity (혐기성 암모늄 산화균의 활성에 대한 식종미생물, 히드라진 및 아질산성 질소 농도의 영향)

  • Jung, Jin-Young;Kang, Shin-Hyun;Kim, Young-O;Chung, Yun-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.477-483
    • /
    • 2005
  • Anammox (Anaerobic Ammonium Oxidation) bacteria is recently discovered microorganism which can oxidize ammonium to nitrogen gas in the presence of nitrite under anaerobic conditions. The anammox process can save an energy for nitrification and need not require a carbon source for denitrification, however, the start-up periods takes a long time more than several months due to the long doubling time (approximately 11 days). In order to find the effects of seeding microorganisms, hydrazine, and nitrite concentration on the enhancement of the anammox activity, five kinds of microorganisms were selected. Among the several kinds of seeding microorganisms, the granule from acclimated microorganisms treating high concentration of ammonia nitrogen (A-1) and sludge from piggery wastewater treatment plant (A-2) were found to have a high anammox activity. In the case of A-1, the maximum nitrogen conversion rate represented 0.4 mg N/L-hr, and the amount of nitrite utilization was high compared to those of other seeding microorganisms. The A-4 represented a higher nitrogen conversion rate to 0.7 mg N/L-hr although the ammonium concentration in the serum bottle was high as 200 mg/L. Meanwhile, the anaerobic granule from UASB reactor treating distillery wastewater showed a low anammox activity due to the denitrification by the remained carbon sources in the granule. Hydrazine, intermediate product in anammox reaction, enhanced the anammox activity by representing 1.4 times of nitrogen gas was produced in the test bottle than that of control, when 0.4 mM of $N_2H_4$ was added to serum bottle which contains 5 mM of nitrite. The high concentration of nitrite (10 mM) resulted in the decrease of the anammox activity by showing lower production of nitrogen gas compared to that of 5 mM addition of nitrite concentration. As a result of FISH (Florescence In-Situ Hybridization) experiment, the Amx820 probe showed a more than 13% of anammox bacteria in a granule (A-1).

Characteristics of Disinfection and Removal of 2-MIB Using Pulse UV Lamp (펄스 UV 램프를 이용한 미생물 소독 및 2-MIB 제거 특성)

  • Ahn, Young-Seog;Yang, Dong-Jin;Chae, Seon-Ha;Lim, Jae-Lim;Lee, Kyung-Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • The characteristics of disinfection and organic removal were investigated with pulse UV lamp in this study. The intensity and emission wavelength of pulse UV Lamp were compared with low pressure UV lamp. The emission spectrum range of pulse UV lamp was between 200 and 400 nm while the emission spectrum of low pressure UV lamp was only single wavelength of 254nm. 3 Log inactivation rate of B. subtilis spore by pulse UV and low pressure UV irradiation was determined as $44.71mJ/cm^2$ and $57.7mJ/cm^2$, respectively. This results implied that wide range of emission spectrum is more effective compared to single wavelength emission at 254nm. 500ng/L of initial 2-MIB concentration was investigated on the removal efficiency by UV only and $UV/H_2O_2$ process. The removal efficiency of UV only process achieved approximately 80% at $8,600mJ/cm^2$ dose. 2-MIB removal rate of $UV/H_2O_2$ (5 mg/L $H_2O_2$) process was 25 times increased compared to UV only process. DOC removal efficiency for the water treatment plant effluent was examined. The removal efficiency of DOC by UV and $UV/H_2O_2$ was no more than 20%. Removal efficiency of THMFP(Trihalomethane Formation Potential), one of the chlorination disinfection by-products, is determined on the UV irradiation and $UV/H_2O_2$ process. Maximum removal efficiency of THMFP was approximately 23%. This result indicates that more stable chemical structures of NOM(Natural Organic Matter) than low molecule compounds such as 2-MIB, hydrogen peroxide and other pollutants affect low removal efficiency for UV photolysis. Consequently, pulse UV lamp is more efficient compared to low pressure lamp in terms of disinfection due to it's broad wavelength emission of UV. Additional effect of pulse UV is to take place the reactions of both direct photolysis to remove micro organics and disinfection simultaneously. It is also expected that hydrogen peroxide enable to enhance the oxidation efficiency on the pulse UV irradiation due to formation of OH radical.

Evaluation of Effect of Silvernanoparticle Treated Implant on Bone Formation (은나노 처리된 임플란트의 골조직 형성에 미치는 효과 평가)

  • Kim, Sin-Guen;Yoon, Youn-Jin;Lee, Young-Man;Lee, Tae-Sun;Choi, Dong-Won;Song, Yun-Jung;Park, Jun-Woo;Choi, Dong-Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.4
    • /
    • pp.233-238
    • /
    • 2012
  • Purpose: To evaluate the effect of silvernanopartilce treated implants on the bone formation and osseointegration. Methods: Silvernanoparticle was produced using an anodic oxidation method. The size of silvernanoparticle ranged from 3.5 nm to 5.9 nm. To check the effect of the capability of osseointegration of silvernanoparticle coated Implant, 32 implants (16 piece of Implant treated with nanoparticle, and 16 piece of Implant was not treated for control) were placed at both the tibia of 8 New Zealand white rabbits. After 4 weeks, 4 rabbits were sacrificed and the removal torque was measured for comparison of the osseointagration ability. Further, 4 rabbits were sacrificed and sliced samples were made. H&E stain was done for microscopic finding. Results: The removal torque of the experimental group was $102.37{\pm}30.54$ N/cm, and the control group was $73.30{\pm}19.97$ N/cm. It was statistically significant (P<0.001). Microscopic finding also shows extinguish results in silvernanoparticle treated implants. Bone formation rate of the experimental group was 43.94% and the control group was 7.58%. It was observed to be statistically significant (P=0.017). Bone to implant contact rate of the experimental group was 58.09%, and the control group was 19.43%. It was found with statistical significance (P<0.001). Conclusion: The silvernanopartilce treated implant shows a better capability of bone regeneration and osseointegration than the non-treated one. Technology to produce smaller particles would make silver more useful and safer.

Treatment of Landfill Leachate using H2O2/O3 AOP and UASB Process (I) - Treatment Characteristics of Leachate depending on H2O2/O3 AOP Pretreatment and Available Nitrogen Form - (H2O2/O3 AOP와 UASB 공정을 이용한 매립지 침출수 처리(I) - H2O2/O3 AOP 전처리 및 질소원에 따른 침출수별 처리특성 -)

  • Jeong, Seung Hyun;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.643-650
    • /
    • 2005
  • In order to treat leachate from aged landfill site effectively, removal of biologically recalcitrant organic matter and denitrification efficiency were evaluated through the combination of $H_2O_2/O_3$ AOP pretreatment process and UASB process. The results can be summarized as follows. In case of leachate having low COD/N ratio from aged landfill site, it is possible to increase available COD for denitrification in nitrate utilizing denitrification and nitrite utilizing denitrification both by enhancing biodegradability of recalcitrant organic matter as applying $H_2O_2/O_3$ AOP to pretreatment process. In this experiment, it is found that available COD for denitrification can be increased to 1.0 and 0.4 g/day, respectively. Comparison has been made between requiring COD and available COD for denitrification in each experimental stages. It is expected that high rate of denitrification can be achieved with leachate from young landfill site because higher amount of available COD for denotrification is present in the leachate than the amount of requiring COD for denitrification. Especially, In leachate from aged landfill site with low COD/N ratio, it can be concluded that denitrification using nitrite nitrogen can enhance overall denitrification performance efficiently because denitrification using nitrite nitrogen requires less amount of carbon source than denitrification using nitrate nitrogen. Comparing the biogas production rate and nitrogen content of biogas under the condition of same amount of nitrate and nitrite addition, biogas production and nitrogen content of biogas are increased during denitrification after $H_2O_2/O_3$ AOP pretreatment process. Therefore, it can be confirmed that COD/N ratio in the leachate is increased. Applying $H_2O_2/O_3$ AOP as pretreatment system of landfill leachate seems to have little economic benefit because it requires additional carbon source to denitrify ammonia nitrogen in leachate coming from aged landfill site. However, it is possible to apply this pretreatment process to leachate from old landfill site in view of AOP process can achieve removal of biologically recalcitrant organic matter and increase of available COD for denitrification simultaneously.

The Leaching of Valuable Metal from Mine Waste Rock by the Adaptation Effect and the Direct Oxidation with Indigenous Bacteria (토착박테리아의 중금속 적응효과와 직접산화작용에 의한 폐광석으로부터 유용금속 용출)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.209-220
    • /
    • 2015
  • The aim of this study was leaching valuable metal ions from mine waste rocks which were abandoned mine site using indigenous aerobic bacteria. In order to tolerate the the indigenous aerobic bacteria to the heavy metal ions they were repeatedly adapted in $CuSO_4{\cdot}5H_2O$ environment. As the repeated generation-adaptation progressed, the pH values of the growth-medium were gradually decreased. During bio-leaching experiments with indigenous aerobic bacteria raised in a heavy metal ion environment for 42 days, the pH of the leaching solution was decreased while increasing the adaptation period. The indigeous bacteria were much more active on the surface of Younhwa waste rocks which contained relatively few the chalcopyrite and Cu content than the Goseong mine waste rocks, and also the amount of Cu and Fe ions were leached more in the Younhwa sample(leaching rate of 92.79% and 55.88%, respectively) than the Goseong sample(leaching rate of 66.77% and 21.83%, respectively). Accordingly, it is confirmed that valuable metal ions can be leached from the mine waste rocks, if any indigenous bacteria which inhabits a mine environment site for a long time with heavy metal ions can be used, and these bacteria can be progressively adapted in the growth-solutions containing the target heavy metals.

Quality Properties of Gangjung Added with Detoxified Stem Bark of Rhus verniciflua (RVSB) Extract during Acceleration Storage (무독화 옻 추출물 첨가 강정의 가온저장 중 품질 특성)

  • Kim, Kyung-Mi;Kim, Tae-Young;Kim, Myung-Kon;Kim, Haeng-Ran
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.425-431
    • /
    • 2007
  • The quality characteristics of Gangjung added with detoxified Rhus verniciflua stem bark (RVSB) extract, as well as the changes that occurred in the product during accelerated storage ($60^{\circ}C$, 24 hr), were investigated. The expansion rate of Gangjung was not significantly different (p < 0.05). The L-value of the Gangjung with added detoxified RVSB extract was higher than the control, while the a-value decreased as the addition levels of the detoxified RVSB extract increased. The b-value was highest for the Gangjung prepared with 7% (w/w) detoxified RVSB extract. The moisture content of the Gangjung decreased as the storage period increased, but the addition of detoxified RVSB extract (p < 0.05) did not significantly change this effect. We found no significant difference in the hardness of the Gangjung within the concentration range of 0-7% (w/w) detoxified RVSB extract, and the peak number slightly decreased as the storage period increased. After 16 hr of storage, the acid value was significantly lower for the Gangjung containing detoxified RVSB extract at concentration between 5-7%. Furthermore, after 12 hr of accelerated storage, peroxide and TBA values significantly decreased with additions of detoxified RVSB extract that were over 3% (w/w). These results suggest that the physical texture of Gangjung did not improve by the addition of detoxified RVSB extract; however, its rate of lipid oxidation was reduced.