• Title/Summary/Keyword: oxidant induction

Search Result 77, Processing Time 0.027 seconds

Anti-oxidant Effects of the Water Extracts from the Inonotus Obliquus against Cisplatin- Induced Damage in HEI-OC1 Cells (차가버섯 물 추출물의 cisplatin에 의해 유도된 HEI-OC1세포 손상에 대한 항산화효과)

  • Youn, Myung-Ja;O, Kwang-Joong;Park, Kie-In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.451-458
    • /
    • 2011
  • The medicinal mushroom Inonotus obliquus is a traditional and widely used multi-functional fungus. In this study, we have investigated whether Inonotus obliquus (Chaga mushroom) extracts exerts anti-oxidant effects on cisplatin-induced cytotoxicity in auditory cell line, HEI-OC1 cells. First of all, Chaga extracts has no harmful effects on viability of HEI-OC1 cells in the dose range of $65{\sim}125{\mu}g/m{\ell}$. Moreover, it shows cyto-protective effects on the cells treated with cisplatin-induced cytotoxicity in HEI-OC1 cells and the damage of hair cells arrays of the rat primary organ of Corti explants in the presence of cisplatin. Pretreatment with Chaga extracts inhibited the cell death, reactive oxygen species generation (ROS), lipid peroxidation induced by cisplatin. These effects were associated with the induction of antioxidant enzyme by Chaga extracts. We further investigated the effects of Chaga extracts on expression of antioxidant enzymes such as Cu, Zn superoxide dismutase (SOD 1) and Mn SOD (SOD 2) by RT-PCR. In addition, Chaga extracts shows SOD activity and SOD protein expression in cisplatin treated group induced similar to control group. Taken together, these results indicate that Chaga extracts can prevent cisplatin-induced cytotoxicity by radical-scavenging activity (SOD activity) in HEI-OC1 cells. It might be an effective as antioxidant and further studies on the chemo-preventive mechanisms of Inonotus obliquus are needed.

Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

  • Lee, Yoo-hwan;Kim, Jung-hee;Song, Choon-ho;Jang, Kyung-jeon;kim, Cheol-hong;Kang, Ji-Sook;Choi, Yung-hyun;Yoon, Hyun-Min
    • Journal of Pharmacopuncture
    • /
    • v.19 no.1
    • /
    • pp.59-69
    • /
    • 2016
  • Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, $H_2O_2$) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and $H_2O_2$ in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and $H_2O_2$-induced growth inhibition. Results: The results showed that EGL effectively inhibited $H_2O_2$-induced growth and the generation of ROS. EGL markedly suppressed $H_2O_2$-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 ($p-{\gamma}H2AX$), a widely used marker of DNA damage, suggesting that EGL prevented $H_2O_2$-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against $H_2O_2$-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the cellular anti-oxidant defense capacity through activation of Nrf2/HO-1, thereby protecting C2C12 myoblasts from $H_2O_2$-induced oxidative cytotoxicity.

Evaluation of Evodiae Fructus Extract on the Chronic Acid Reflux Esophagitis in Rats (오수유(吳茱萸) 추출물이 만성 역류성 식도염 흰쥐에 미치는 효능 평가)

  • Lee, Jin A;Park, Hae-Jin;Kim, Soo Hyun;Kim, Min Ju;Kim, Kyeong Jo;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.34 no.2
    • /
    • pp.15-23
    • /
    • 2019
  • Objective : Reflux esophagitis (RE) is a disease that caused gastric acid reflux and inflammation due to unstable gastroesophageal sphincter, as increasing worldwide respectively. This study was conducted to evaluate the effect of Evodiae Fructus (EF) extract on chronic reflux esophagitis in rats. Methods : The EF was measured antioxidant activity, such as total polyphenol and total flavonoid contents, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and 2, 2'-azinobis-3-ethyl-enzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Rats were divided into 3 groups; Nor (normal group), Con (chronic acid reflux esophagitis rats treatment with water), EF (chronic acid reflux esophagitis rat treatment with EF 200 mg/kg body weight group). A surgically-induced chronic acid reflux esophagitis (CARE) model was established in SD rats, and treated with water or EF 200 mg/kg body weight for 14 consecutive days. Results : Administration of EF to rats of induction of chronic acid reflux esophagitis was found to reduce esophagus tissues injury. Reactive oxygen species (ROS) and produces peroxynitrite ($ONOO^-$) levels of esophagus tissues were significantly decreased in EF compared to Con group. As results of esophagus protein analyses, EF effectively reduce inflammatory-related factors ($NF-{\kappa}Bp65$, $p-I{\kappa}B{\alpha}$, iNOS, $TNF-{\alpha}$, IL-6), and increase anti-oxidant enzyme (Nrf2, HO-1, SOD, catalase, GPx-1/2). Conclusions : These results suggest that EF administration comfirmed that decreased esophagus tissues injury, oxidantive stress, anti-inflammation effect, and increased anti-oxidant effect. Therefore, EF was the potential to be used as a natural therapeutic drug.

Bis is Induced by Oxidative Stress via Activation of HSF1

  • Yoo, Hyung Jae;Im, Chang-Nim;Youn, Dong-Ye;Yun, Hye Hyeon;Lee, Jeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.403-409
    • /
    • 2014
  • The Bis protein is known to be involved in a variety of cellular processes including apoptosis, migration, autophagy as well as protein quality control. Bis expression is induced in response to a number of types of stress, such as heat shock or a proteasome inhibitor via the activation of heat shock factor (HSF)1. We report herein that Bis expression is increased at the transcriptional level in HK-2 kidney tubular cells and A172 glioma cells by exposure to oxidative stress such as $H_2O_2$ treatment and oxygen-glucose deprivation, respectively. The pretreatment of HK-2 cells with N-acetyl cysteine, suppressed Bis induction. Furthermore, HSF1 silencing attenuated Bis expression that was induced by $H_2O_2$, accompanied by increase in reactive oxygen species (ROS) accumulation. Using a series of deletion constructs of the bis gene promoter, two putative heat shock elements located in the proximal region of the bis gene promoter were found to be essential for the constitutive expression is as well as the inducible expression of Bis. Taken together, our results indicate that oxidative stress induces Bis expression at the transcriptional levels via activation of HSF1, which might confer an expansion of antioxidant capacity against pro-oxidant milieu. However, the possible role of the other cis-element in the induction of Bis remains to be determined.

Comparative Analysis of Defense Responses in Chocolate Spot-Resistant and -Susceptible Faba Bean (Vicia faba) Cultivars Following Infection by the Necrotrophic Fungus Botrytis fabae

  • El-Komy, Mahmoud H.
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.355-366
    • /
    • 2014
  • In this study, resistance responses were investigated during the interaction of Botrytis fabae with two faba bean cultivars expressing different levels of resistance against this pathogen, Nubaria (resistant) and Giza 40 (susceptible). Disease severity was assessed on leaves using a rating scale from 1 to 9. Accumulation levels of reactive oxygen species (ROS), lipid peroxidation and antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) were measured in leaf tissues at different times of infection. The expression profiles of two pathogenesis-related proteins (PRPs) encoded by the genes PR-1 and ${\beta}$-1,3-glucanase were also investigated using reverse transcription RT-PCR analysis. The accumulation of these defense responses was induced significantly in both cultivars upon infection with B. fabae compared with un-inoculated controls. The resistant cultivar showed weaker necrotic symptom expression, less ROS accumulation, a lower rate of lipid peroxidation and higher activity of the enzymatic ROS scavenging system compared with susceptible cultivar. Interestingly, ROS accumulated rapidly in the resistant leaf tissues and peaked during the early stages of infection, whereas accumulation was stronger and more intense in the susceptible tissues in later stages. Moreover, the response of the resistant cultivar to infection was earlier and stronger, exhibiting high transcript accumulation of the PR genes. These results indicated that the induction of oxidant/antioxidant responses and the accumulation of PRPs are part of the faba bean defense mechanism against the necrotrophic fungus B. fabae with a different intensity and timing of induction, depending on the resistance levels.

Panduratin A Inhibits Cell Proliferation by Inducing G0/G1 Phase Cell Cycle Arrest and Induces Apoptosis in Breast Cancer Cells

  • Liu, Qiuming;Cao, Yali;Zhou, Ping;Gui, Shimin;Wu, Xiaobo;Xia, Yong;Tu, Jianhong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.328-334
    • /
    • 2018
  • Because of the unsatisfactory treatment options for breast cancer (BC), there is a need to develop novel therapeutic approaches for this malignancy. One such strategy is chemotherapy using non-toxic dietary substances and botanical products. Studies have shown that Panduratin A (PA) possesses many health benefits, including anti-inflammatory, anti-bacterial, anti-oxidant and anticancer activities. In the present study, we provide evidence that PA treatment of MCF-7 BC cells resulted in a time- and dose-dependent inhibition of cell growth with an $IC_{50}$ of $15{\mu}M$ and no to little effect on normal human MCF-10A breast cells. To define the mechanism of these anti-proliferative effects of PA, we determined its effect critical molecular events known to regulate the cell cycle and apoptotic machinery. Immunofluorescence and flow cytometric analysis of Annexin V-FITC staining provided evidence for the induction of apoptosis. PA treatment of BC cells resulted in increased activity/expression of mitochondrial cytochrome C, caspases 7, 8 and 9 with a significant increase in the Bax:Bcl-2 ratio, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Furthermore, cell cycle analysis using flow cytometry showed that PA treatment of cells resulted in G0/G1 arrest in a dose-dependent manner. Immunoblot analysis data revealed that, in MCF-7 cell lines, PA treatment resulted in the dose-dependent (i) induction of $p21^{WAF1/Cip1}$ and p27Kip1, (ii) downregulation of Cyclin dependent kinase (CDK) 4 and (iii) decrease in cyclin D1. These findings suggest that PA may be an effective therapeutic agent against BC.

Involvement of Heme Oxygenase-1 Induction in the Neuroprotective Activitiy of Extract of Siegesbeckia Herba in Murine Hippocampal HT22 Cells (희렴 추출물의 Heme Oxygenase-1 발현을 통한 생쥐 해마 유래 HT22 세포 보호효과)

  • Im, Nam Kyung;Lee, Dong Sung;Yeo, Sun Jung;Kim, Youn-Chul;Jeong, Gil-Saeng
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.4
    • /
    • pp.316-322
    • /
    • 2012
  • Siegesbeckia Herba is known to have anti-oxidant, anti-inflammatory, anti-allergic and anti-tumor. The objective of this study is to explore the neuroprotective effect of Siegesbeckia Herba against glutamate-induced oxidative stress in mouse hippocampal HT22 cells. Siegesbeckia Herba 70% ethanol extract and solvent fractions have the potent neroprotective effects on glutamate-induced nerotoxicity by induced the expression of heme oxygenase (HO)-1 in the mouse hippocampal HT22 cells. Especially, ethyl acetate fraction showed higher protective effect. In HT22 cell, Siegesbeckia Herba ethyl acetate fraction makes the nuclear accumulation of Nrf2. Further, we found that treatment with c-JUN N-terminal kinase (JNK) inhibitor (SP600125) reduced Siegesbeckia Herba ethyl acetate fraction induced HO-1 expression and Siegesbeckia Herba ethyl acetate fraction also increased JNK phosphorylation. In conclusion, the ethyl acetate fraction of 70% ethanol extract of Siegesbeckia Herba significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2 and JNK pathway in mouse hippocampal HT22. Taken together these finding suggest that Siegesbeckia Herba ethyl acetate fraction good source for taking active compounds and may be a potential therapeutic for brain disorder by targeting the oxidative stress of neuronal cell.

Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer

  • Kang, Seong Hee;Bak, Dong-Ho;Chung, Byung Yeoup;Bai, Hyoung-Woo;Kang, Bo Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.413-422
    • /
    • 2020
  • Delphinidin is a major anthocyanidin compound found in various vegetables and fruits. It has anti-oxidant, anti-inflammatory, and various other biological activities. In this study we demonstrated the anti-cancer activity of delphinidin, which was related to autophagy, in radiation-exposed non-small cell lung cancer (NSCLC). Radiosensitising effects were assessed in vitro by treating cells with a subcytotoxic dose of delphinidin (5 μM) before exposure to γ-ionising radiation (IR). We found that treatment with delphinidin or IR induced NSCLC cell death in vitro; however the combination of delphinidin pre-treatment and IR was more effective than either agent alone, yielding a radiation enhancement ratio of 1.54 at the 50% lethal dose. Moreover, combined treatment with delphinidin and IR, enhanced apoptotic cell death, suppressed the mTOR pathway, and activated the JNK/MAPK pathway. Delphinidin inhibited the phosphorylation of PI3K, AKT, and mTOR, and increased the expression of autophagy-induced cell death associated-protein in radiation-exposed NSCLC cells. In addition, JNK phosphorylation was upregulated by delphinidin pre-treatment in radiation-exposed NSCLC cells. Collectively, these results show that delphinidin acts as a radiation-sensitizing agent through autophagy induction and JNK/MAPK pathway activation, thus enhancing apoptotic cell death in NSCLC cells.

Examination of the Antioxidant Potential of Pycnogenol under Conditions of Oxidative Stress in Escherichia coli Mutants Deficient in HP1 and Superoxide Dismutase Activities

  • Youm, Jeong-A;Kim, Young-Gon
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • Pycnogenol (PYC) is believed to have potential as a therapeutic agent against free radical-mediated oxidative stress. It is important, therefore, to understand the interactions between PYC and cellular defenses against oxidative stress. Toward this end, we analyzed the survival rates on the gene expression responses of E. coli sod katG mutants to PYC after pre-treatment of PQ or H$_2$O$_2$-mediated stress under aerobic conditions. We identified SOD induced by PYC, but not HP1 in sod hate mutants. A striking result was the PYC induction of SOD with antioxidant property in single katG mutant cells, particularly MnSOD and CuZnSOD. These inductions were further increased with oxidative stress, while HP1 was not induced in these conditions. The effects of pycnogenol treatment on these cells depend in part on its concentration on the stress response. Protective effects of PYC exposure which affected gene expression in cells were consistent with cell survival rates. Our results demonstrate that pycnogenol may alter the stress response gene expression in a specific manner such as SOXRS because PYC induction of single mutant only worked under increased PQ stress. All together our data indicate that SOD activity is essential for the cellular defense against PQ-mediated oxidative stress, suggesting that PYC may not be effective as an antioxidant in only oxidative stress conditions. On the other hand, it was expected that PYC may play a role as a pro-oxidant and if it is available for use, it should be evaluated carefully.

Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages

  • Kim, Ga-Young;Jeong, Hana;Yoon, Hye-Young;Yoo, Hye-Min;Lee, Jae Young;Park, Seok Hee;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.640-645
    • /
    • 2020
  • Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS signal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.