• Title/Summary/Keyword: oxalate chelating

Search Result 11, Processing Time 0.029 seconds

Oxalate Chelating Activity of Egg White Proteins and Their Hydrolysates

  • Holipitiyage Shyami Rashmiki, Holipitiya;Palihawadanege Iresha Lakmini, Fernando;Ethige Chathura Nishshanka, Rathnapala;Alakolange Gedara Achala Wimukthika, Alakolanga;Edirisinghe Dewage Nalaka Sandun, Abeyrathne;Ki-Chang, Nam
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.221-228
    • /
    • 2022
  • Major egg white proteins and their hydrolysates serve as functional food ingredients that have certain metal-chelating properties. Employing egg white proteins and their hydrolysates to scavenge dietary oxalates is anticipated to have beneficial effect in the prevention of kidney stones. The objective of this study was to determine the biogenic oxalate-chelating activity of ovalbumin, ovomucin, and ovotransferrin and their hydrolysates. To prepare oxalate extracts, 30 mL of 0.25 N HCl was added to separately to 0.5 g of dried spinach and starfruit powders followed by boiling for 15 min, and after cooling, the addition of a further 20 mL of 0.25 N HCl. Having prepared these extracts, ovalbumin, ovomucin, and ovotransferrin and their hydrolysates were separately mixed with oxalate extracts and incubated at 3℃ for 24 h. Following centrifugation, supernatants were analyzed by HPLC using a reverse-phase C18 column coupled with a diode array detector. We found that all assessed proteins and their hydrolysates showed biogenic oxalate-chelating activity against the oxalates of spinach. In contrast, however, only ovalbumin, ovalbumin-hydrolysate, and ovomucin showed chelating activity (57.10%±8.84%, 85.44%±5.30%, 73.20%±4.13%, respectively) against the oxalates of starfruit (P<0.05). Overall, hydrolyzed ovalbumin was identified as the most effective chelator of the oxalates both spinach and starfruit. In this study, we thus established that the assessed egg white proteins and their hydrolysates have oxalate-chelating activity in vitro, thereby indicating that these compounds have potential utility as nutraceuticals for the chelation of dietary oxalate. However, further research will be necessary to verify their oxalate-chelating activities against different fruits and vegetables and under specific in vivo conditions and against purified oxalate.

Removal of Methyl tert-Butyl Ether (MTBE) by Modified Fenton Process for in-situ Remediation (Methyl tert-Butyl Ether(MTBE)의 in-situ Remediation을 위한 Modified Fenton Process에 관한 연구)

  • Chung, Young-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • A recent study showed that MTBE can be degraded by Fenton's Reagent (FR). The treatment of MTBE with FR, however, has a definite limitation of extremely low pH requirement (optimum pH $3{\sim}4$) that makes the process impracticable under neutral pH condition on which the ferrous ion precipitate forming salt with hydroxyl anion, which result in the diminishment of the Fenton reaction and incompatible with biological treatment. Consequently, this process using only FR is not suitable for in-situ remediation of MTBE. In order to overcome this limitation, modified Fenton process using NTA, oxalate, and acetate as chelating reagents was introduced into this study. Modified Fenton reaction, available at near neutral pH, has been researched for the purpose of obtaining high performance of oxidation efficiency with stabilized ferrous or ferric ion by chelating agent. In the MTBE degradation experiment with modified Fenton reaction, it was observed that this reaction was influenced by some factors such as concentrations of ferric ion, hydrogen peroxide, and each chelating agent and pH. Six potential chelators including oxalate, succinate, acetate, citrate, NTA, and EDTA were tested to identify an appropriate chelator. Among them, oxalate, acetate, and NTA were selected based on their remediation efficiency and biodegradability of each chelator. Using NTA, the best result was obtained, showing more than 99.9% of MTBE degradation after 30 min at pH 7; the initial concentration of hydrogen peroxide, NTA, and ferric ion were 1470 mM, 6 mM, and 2 mM, respectively. Under the same experimental condition, the removal of MTBE using oxalate and acetate were 91.3% and 75.8%, respectively. Optimum concentration of iron ion were 3 mM using oxalate which showed the greatest removal efficiency. In case of acetate, $[MTBE]_0$ decreased gradually when concentration of iron ion increased above 5 mM. In this research, it was showed that modified Fenton reaction is proper for in-situ remediation of MTBE with great efficiency and the application of chelatimg agents, such as NTA, was able to make the ferric ion stable even at near neutral pH. In consequence, the outcomes of this study clearly showed that the modified Fenton process successfully coped with the limitation of the low pH requirement. Furthermore, the introduction of low molecular weight organic acids makes the process more available since these compounds have distinguishable biodegradability and it may be able to use natural iron mineral as catalyst for in situ remediation, so as to produce hydroxyl radical without the additional injection of ferric ion.

The Treatment of LNAPL(BETXlMTBE) Contaminated Groundwater Applying Photo-assisted Fenton Reaction with Various Fe(III) Chelator (Photo-assisted Fenton 반응에 다양한 Fe(III) chelator를 적용한 LNAPL(BTEX/MTBE)오염 지하수 처리에 관한 연구)

  • Park, Jong-Hun;Do, Si-Hyun;Lee, Hong-Kyun;Jo, Young-Hoon;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.26-32
    • /
    • 2009
  • In this study, the degradation of BTEX (benzene, toluene, ethylbenzene, xylene) was tested in both (Fe$^{3+}$+chelating agent)/H$_2$O$_2$system [Fe(III) 1 mM, oxalate 6 mM, H$_2$O$_2$ 3%, and pH 6] and UV/(Fe3++ chelating agent)lHzOz system [UV dose 17.4 kWhlL, Fe(III) 1mM, oxalate 6 mM,H$_2$O$_2$ 1%, and pH 6]. The types of chelating agents used in experiments were catechol, NTA, gallic, acetyl acetone, succinic, acetate, EDTA, citrate, malonate, and oxalate and the optimum chelating agent for BTEX degradation was determined. The results showed that acetate was the optimum chelating agent for BTEX degradation in both (Fe$^{3+}$+chelating agent)/H$_2$O$_2$ and UV/(Fe$^{3+}$+chelating agent)/H$_2$O$_2$ system, and UV radiation enhanced the degradation of BTEX with any types of chelating agents. Moreover, UV/(Fe$^{3+}$+chelating agent)/H$_2$O$_2$ system, which chelating agent was acetate, removed effectively mixtures of BTEX and MTBE (methyl tert-butyl ether) when the concentration of both BTEX and MTBE was 200 mg/L, respectively. In this system, BTEX was degraded completely and 85% of MTBE was degraded at the reaction time of 180 min. Therefore, UV/((Fe$^{3+}$+chelating agent)/H$_2$O$_2$ system with acetate as a chelating agent removed not only BTEX but also BTEX and MTBE, effectively.

Ethylenediamine as a Promising and Biodegradable Chelating Agent in Aluminum Phytoremediation (알루미늄 식물학적정화에 사용 가능하고 생분해 되는 킬레이트로 후보로서의 ethylenediamine)

  • Lee, Sang-Man
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1041-1046
    • /
    • 2010
  • Phytoextraction is a technique which uses plants to clean up metal-contaminated soils. Recently, various chelating agents were introduced into this technique to increase the bioavailability of metals in soils. Even though the technique is an economic and environment-friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. Therefore, this research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Alunimum (Al) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetraacetic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Al to analyze the effect on plant growth. His slightly diminished the inhibitory effect of Al on root growth of plants, whereas, Cys, citrate, malate, oxalate, and succinate did not show significant effects. Both EDTA and EDA strongly diminished the inhibitory effect of Al on root growth. The effect of EDA is correlated with decreased Al uptake into the plants. In conclusion, as a biodegradable chelating agent, EDA is a good candidate for highly Al-contaminated areas.

Effect of Various Biodegradable Chelating Agents on Growth of Plants under Lead stress (생분해되는 다양한 킬레이트들이 납에 노출된 식물의 성장에 미치는 영향)

  • Lee, Sang-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.61-65
    • /
    • 2010
  • Phytoextraction is a method of phytoremediation using plants to remediate metal-contaminated soils. Recently, various chelating agents were used in this method to increase the bioavailability of metals in soils. Even though phytoextraction is an economic and environment-friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. This research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Lead (Pb) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetraacetic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Pb to analyze the effect on root growth. Cys strongly increased the inhibitory effect of Pb on root growth of plants, while, His did not affect on it significantly. The inhibitory effect of oxalate is weak, and malate, citrate, and succinate did not show significant effects. Both EDTA and EDA diminished the inhibitory effect of Pb on root growth. The effect of EDA is correlated with decreased Pb uptake into the plants. In conclusion, as biodegradable chelating agents, EDA is a good candidate for highly Pb-contaminated area.

Ethylenediamine as a Promising and Biodegradable Chelating Agent in Growth of Plant Under Zinc Stress (아연 스트레스를 받는 식물의 성장을 위한 생분해되는 킬레이트로서 에틸렌디아민)

  • Lee, Sang-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.115-119
    • /
    • 2010
  • Zinc (Zn) is an essential element required for growth and development of plants. However, Zn can be toxic to plants when it presents excessive amount. Phytoextraction is an economic and environment-friendly technique using plants to clean-up metal-contaminated soils. However, the technique cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. Therefore, this research focuses on identifying chelating agents which are biodegradable and applicable to highly metalcontaminated areas. Zn as a target metal and cysteine (Cys), histidine (His), malate, citrate oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Plants were grown on agar media containing various chelating agents with Zn to analyze the effect on plant growth. Malate and His slightly increased the inhibitory effect of Zn on root growth of plants, whereas Cys, citrate, oxalate, and succinate did not show significant effects. However, EDA strongly diminished the inhibitory effect of Zn on root growth. The effect of EDA is correlated with decreased Zn uptake into the plants. In conclusion, as biodegradable chelating agents, EDA is a good candidate for growth of plants in highly Zn-contaminated areas.

Effect of Various Biodegradable Chelating Agents on Root Growth of Plants under Mercury Stress (생분해되는 다양한 킬레이트들이 수은에 노출된 식물의 뿌리성장에 미치는 영향)

  • Lee, Sangman
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.155-158
    • /
    • 2014
  • Phytoextraction is a technique that uses plants to remediate metal-contaminated soils. However, this technique cannot be applied in highly metal-contaminated areas, as plants cannot normally grow under such conditions. Therefore, this study investigated the introduction of various biodegradable chelating agents to increase the bioavailability of metals in highly metal-contaminated areas. Mercury (Hg) was selected as the target metal, while cysteine (Cys), histidine (His), malate, succinate, oxalate, citrate, and ethylenediamine (EDA) were used as biodegradable chelating agents. Plants were grown on agar media containing various chelating agents and Hg to analyze the effect on plant root growth. Cys and EDA were both found to diminish the inhibitory effect of Hg on plant root growth, whereas His, citrate, and ethylenediamine tetraacetic acid (EDTA) did not show any significant effects, and malate, succinate, and oxalate even promoted the inhibitory effect of Hg on plant root growth. Thus, Cys and EDA would seem to be promising biodegradable chelating agents for highly Hg-contaminated areas.

A Study on Remediation of Explosives-Contaminated Soil/Ground Water using Modified Fenton Reaction and Fenton-like Reaction (Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염 토양/지하수의 처리에 관한 연구)

  • Hur, Jung-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.153-160
    • /
    • 2005
  • There have been large areas of soil contaminated with high levels of explosives. For this experimental work, 2,4,6-trinitrotoluene (TNT) was tested as a representative explosive contaminant of concern in both aqueous and soil samples and its removal was evaluated using three different chemical treatment methods: 1) the classical Fenton reaction which utilizes hydrogen peroxide ($H_2O_2$) and soluble iron at pH less than 3; 2) a modified Fenton reaction which utilizes chelating agents, $H_2O_2$, and soluble iron at pH 7; and 3) a Fenton-like process which utilizes iron minerals instead of soluble iron and $H_2O_2$, generating a hydroxyl radical. Using classic Fenton reaction, 93% of TNT was removed in 20 h at pH 3 (soil spiked with 300 mg/L of TNT, 3% $H_2O_2$ and 1mM Fe(III)), whereas 21% removed at pH 7. The modified Fenton reaction, using nitrilotriacetic acid (NTA), oxalate, ethylenediaminetetraacetic acid (EDTA), acetate and citrate as representative chelating agents, was tested with 3% $H_2O_2$ at pH 7 for 24 h. Results showed the TNT removal in the order of NTA, EDTA, oxalate, citrate and acetate, with the removal efficiency of 87%, 71%, 64%, 46%, and 37%, respectively, suggesting NTA as the most effective chelating agent. The Fenton-like reaction was performed with water contaminated with 100 mg/L TNT and soil contaminated with 300 mg/L TNT, respectively, using 3% $H_2O_2$ and such iron minerals as goethite, magnetite, and hematite. In the goethite-water system, 33% of TNT was removed at pH 3 whereas 28% removed at pH 7. In the magnetite-water system, 40% of TNT was removed at pH 3 whereas 36% removed at pH 7. In the hematite-water system, 40% of TNT was removed at pH 3 whereas 34% removed at pH 7. For further experiments combining the modified Fenton reaction with the Fenton-like reaction, NTA, EDTA, and oxalate were selected with the natural iron minerals, magnetite and hematite at pH 7, based on the results from the modified Fenton reaction. As results, in case magnetite was used, 79%, 59%, and 14% of TNT was removed when NTA, oxalate, and EDTA used, respectively, whereas 73%, 25%, and 19% removed in case of hematite, when NTA, oxalate, and EDTA used, respectively.

Development of Practical Advanced Oxidation Treatment System for Decontamination of Soil and Groundwater Contaminated with Chlorinated Solvent (TCE, PCE) : Phase I (염소계 화합물(TCE, PCE)로 오염된 토양 및 지하수 처리를 위한 실용적 고도산화처리시스템 개발 (I))

  • Sohn, Seok-Gyu;Lee, Jong-Yeol;Jung, Jae-Sung;Lee, Hong-Kyun;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.105-114
    • /
    • 2007
  • The most advanced oxidation processes (AOPs) are based on reactivity of strong and non-selective oxidants such as hydroxyl radical (${\cdot}OH$). Decomposition of typical DNAPL chlorinated compounds (TCE, PCE) using various advanced oxidation processes ($UV/Fe^{3+}$-chelating agent/$H_2O_2$ process, $UV/H_2O_2$ process) was approached to develop appropriate methods treating chlorinated compound (TCE, PCE) for further field application. $UV/H_2O_2$ oxidation system was most efficient for degrading TCE and PCE at neutral pH and the system could remove 99.92% of TCE after 150 min reaction time at pH 6($[H_2O_2]$ = 147 mM, UVdose = 17.4 kwh/L) and degrade 99.99% of PCE within 120 min ($[H_2O_2]$ = 29.4 mM, UVdose = 52.2 kwh/L). Whereas, $UV/Fe^{3+}$-chelating agent/$H_2O_2$ system removed TCE and PCE ca. > 90% (UVdose = 34.8 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 147 mM) and 98% after 6hrs (UVdose = 17.4 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 29.4 mM), respectively. We improved the reproduction system with addition of UV light to modified Fenton reaction by increasing reduction rate of $Fe^{3+}$ to $Fe^{2+}$. We expect that the system save the treatment time and improve the removal efficiencies. Moreover, we expect the activity of low molecular organic compounds such as acetate or oxalate be effective for maintaining pH condition as neutral. This oxidation system could be an economical, environmental friendly, and practical treatment process since the organic compounds and iron minerals exist in nature soil conditions.

Effect of Various Biodegradable Chelating Agents on Root Growth of Plants under Copper Stress (생분해 되는 다양한 킬레이트가 구리에 노출된 식물의 뿌리성장에 미치는 영향)

  • Lee, Sang-Man
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • Phytoextraction is a method of phytoremediation using plants to clean up metal-contaminated soils. Recently, various chelating agents were used in this method to increase the bioavailability of metals in soils. Even though phytoextraction is an economic and environmentally friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. This research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Copper (Cu) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetracyclic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Cu to analyze the effect on root growth. Cys, His, and citrate strongly diminished the inhibitory effect of Cu on root growth of plants. The effect of oxalate was weak, and malate and succinate did not show significant effects. EDTA diminished and EDA promoted the inhibitory effects of Cu on root growth. These effects of chelating agents are correlated with Cu uptake into the roots. In conclusion, as biodegradable chelating agents, Cys, His, and citrate are good candidates for highly Cu-contaminated areas, while EDA can be useful in phytoextraction for Cu.