• Title/Summary/Keyword: overproduction.

Search Result 265, Processing Time 0.03 seconds

Ginseng Saponin Prevents the LPS-induced TNE-$\alpha$ Production in Mice

  • Kim, Kyoung-Mi;Kim, Hye-Ju;Ryu, Jae-Ha;Sohn, Dong-Hwan
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.79-82
    • /
    • 2000
  • Saponins, the major component of ginseng root, mediate the pharmacological action of the ginseng. It has been reported that ginseng roots have protective effect against various toxins. In this study, the effects of ginseng total saponin (GTS) on tumor necrosis factor-alpha (TNF-$\alpha$) production induced by bacterial toxin was investigated. TNF-$\alpha$ level in lipopolysaccharides (LPS)-activated serum was remarkably reduced by intraperitoneal administration (50 mg/kg)of ginseng total saponin (GTS) into mice. The inhibitory effect against TNF-$\alpha$ production was not significant when GTS was given after the LPS injection, and by oral administration. These results suggested that ginseng root may have protective activity against liver damage accompanying the overproduction of TNF-$\alpha$ and GTS is the active component of ginseng.

  • PDF

Comparison of Linarin and Its Acetylated linarin for the Cytotoxicity on the Proliferation of Lymphocytes and Activation of Macrophages (림포사이트의 증식과 대식세포의 활성화에 관한 린나린과 아세칠 린나린의 비교 연구)

  • 한신하;신지혜;소명아;한혜란;김민준;임동술;김경제
    • YAKHAK HOEJI
    • /
    • v.47 no.4
    • /
    • pp.234-238
    • /
    • 2003
  • Linarin is a main compound from Chrysanthemum zawadskii var, latilobum. However, the biological mechanisms of these activities are unclear. Because of this wide diversity of effects, it is believed that they may be exerted through pluripotent effectors of linarin. In our previous screening study, the effects of linarin on the mouse macrophages cell line, RAW 264.7 cells, were investigated. It was found that linarin could stimulate macrophages activation by the production of tumor necrosis factor (TNF). The linarin (6.25∼12.5 $\mu\textrm{g}$/mι) inhibited the production of NO in LPS-activated RAW 264.7 cells and linarin became an useful candidates for the development of new drug to treat endotoxemia and inflammation accompanied by the overproduction of NO. However, linarin-treated total lymphocyte showed cytotoxicity in a dose dependent manner between 20 $\mu\textrm{g}$/mι and 40 $\mu\textrm{g}$/mι. In this study, linarin derivative (acetylated linarin) was synthesized in order to obtain less-cytotoxicity of linarin and evaluated for their in vitro cytotoxic activity aganist mouse total lymphocyte. There was no cytotoxic activity in a dose dependent manner (20∼40 $\mu\textrm{g}$/mι) of acetylated linarin whereas linarin showed. The production of NO, however, was not the case by this modified linarin. The cell morphological change was not significantly changed in response to acetylated linarin alone and these effects were potentiated by the addition of LPS. These results suggest that acetylated linarin may be developed to be a promising new drug candidate without cytotoxicity on the basis of its activity of macrophage activation.

Overproduction of Sodium Gluconate Using the Recombinant Aspergillus niger (재조합 Aspergillus niger에 의한 글루콘산나트륨의 산업적 생산)

  • 이선희;이현철;김대혁;양문식;정봉우
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.214-219
    • /
    • 1998
  • Polymerase chain reaction(PCR) was conducted to obtain the gene encoding glucose oxidase(GOD) from Aspergillus niger(ATCC 2110) and the DNA sequence determined was coincided with published GOD sequence from A. niger. Recombinant transforming vector containing GOD and hygromycin B(hyg.B) resistant gene(hph) was constructed and used for further transformation of A. niger ATCC 2110. Selectivity of hyg.B against A. niger differed depending on which media were used i.e., nutrient-rich media such as potato dextrose agar(PDA) and complete medium(CM) showed only 50% growth inhibition at 400 $\mu$m ml$^-1$ of hyg.B while the minimal media inhibited mycelial growth completely at 200 $\mu$m ml$^-1$ of hyg.B. Twenty to sixty putative transformants were isolated from the hyg.B-containing minimal top agar, transferred successively onto alternating selective and nonselective media for a mitotic stability of hyg.B resistance and, then, single-spored. Among the stable transformants, the transformant(GOD1-6) grown by flask culture showed the considerable increase of extracellular GOD activity, which was estimated to the degree of 50% - 100% comparing to that of wild type. Transformation of tGOD1-6 was resulted from integration of the vectors into heterologous as well as homologous regions of the A. niger genome. Southern blot analysis revealed that there were two independent integrations of vector into fungal genome and one into the GOD gene due to homologous recombination. In addition, GOD activity and sodium gluconate production when tGOD1-6 was fed-batch fermented were enhanced 11 fold and 2.25 fold, respectively, compared to that of the wild type.

  • PDF

Media Optimization and Comparison of Fermentation Type for Overproduction of Staphylodinase in Bacillus subtilis WB700 (Bacillus Subtilis W700에서의 Staphylpkinase 대량생산을 위한 배지 최적화 및 배양방법의 비교)

  • 박인석;김병기
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.415-419
    • /
    • 2001
  • To produce staphylokinase (SAK) in B. subtilis WB700, media optimization was carried out and the operation of batch and fed-batch fermentation were compared. Tryptone is a good nitrogen source and its optimum concentration in modified super rich(MSR) media is 15 g/L. When glucose is used as a limiting carbon source in the MSR media, 5 g/L of an optimum glucose concentration was identified for the SAK production under the control of P43 promoter. As the expression of P43 promoter is controlled by the limitation of oxygen, the SAK production was controlled at the 30% DO level in the fed-batch fermentation. Unexpectedly, batch fermentation using MSR media showed 1.5 times higher yield of SAK than that of the fed-batch fermentation. The main cause of the results comes from not achieving higher cell concentration in the fed-batch fermentation and the optimum expression level of P43 promoter under oxygen or nutrient limitations. We could not achieve the increase in cell concentration by any means in batch culture as well as fed-batch culture. The highest yield in the batch culture was 2880 units of SAK activity and 455 mg/L of secreted SAK.

  • PDF

Immunomodulatory Effect of cAMP-Elevating Agents on Macrophage- and T cell-Mediated Immune Responses (cAMP 증가 유도 약물의 대식세포- 및 T 세포-매개성 면역반응 조절작용)

  • Rhee, Man-Hee;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • To investigate the immunomodulatory roles of cyclic AMP (CAMP) on macrophage- and T lymphocyte-mediated immune responses, CAMP elevating agents were employed and carefully re-examined under the activation conditions of the cells. Various inhibitors tested dose-dependently blocked tumor necrosis factor (TNF)-${\alpha}$ production with IC$_{50}$ values ranged from 0.04 to 300 ${\mu}$M. Of the inhibitors, cAMP-elevating agents showed lower cytotoxicity assessed by lactate dehydrogenase (LDH) release, suggesting less toxic and more selective. In particular co-treatment of dbcAMP with a protein kinase C inhibitor staurosporine displayed the synergistic inhibition of TNF-${\alpha}$ production. The modulatory effect of dbcAMP on TNF-${\alpha}$ and nitric oxide (NO) was significantly affected by treatment time of dbcAMP. Thus, post-treatment of dbcAMP (three hours before LPS) abrogated dbcAMP's inhibitory activity and rather enhanced TNF-${\alpha}$ level up to 60%. In contrast, additional NO production was shown at the co-treatment of dbcAMP with LPS. Unlike simultaneous treatment of phorbol 12-myristate 13-acetate (PMA) and interferon (IFN)-${\gamma}$co-treatment, the combination of dbcAMP with other NO-inducing stimuli did not show drastic overproduction of NO. cAMP elevating agents also diminished splenocyte proliferation stimulated by concanavalin (Con) A, phytohemaglutinin A (PHA) and lipopolysaccharide (LPS). In addition, dbcAMP but not rolipram strongly suppressed CD8$^+$ T cells (CTLL-2). Finally, cAMP elevating agents were differentially involved in regulating CD98-mediated cell-cell adhesion. Thus, dbcAMP and rolipram significantly enhanced the cell-cell adhesion, whereas forskolin blocked. Therefore, our results suggest that CAMP elevating agents participate in various immune responses mediated by macrophages and T cells with a different fashion depending on cellular environments and activation signals.

The Study of Bfa1pE438K Suggests that Bfa1 Control the MitoticExit Network in Different Mechanisms Depending on DifferentCheckpoint-activating Signals

  • Kim, Junwon;Song, Kiwon
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.251-260
    • /
    • 2006
  • During mitosis, genomic integrity is maintained by the proper coordination of anaphase entry and mitotic exit via mitotic checkpoints. In budding yeast, mitotic exit is controlled by a regulatory cascade called the mitotic exit network (MEN). The MEN is regulated by a small GTPase, Tem1p, which in turn is controlled by a two-component GAP, Bfa1p-Bub2p. Recent results suggested that phosphorylation of Bfa1p by the polorelated kinase Cdc5p is also required for triggering mitotic exit, since it decreases the GAP activity of Bfa1p-Bub2p. However, the dispensability of GEF Lte1p for mitotic exit has raised questions about regulation of the MEN by the GTPase activity of Tem1p. We isolated a Bfa1p mutant, $Bfa1p^{E438K}$, whose overexpression only partially induced anaphase arrest. The molecular and biochemical functions of $Bfa1p^{E438K}$ are similar to those of wild type Bfa1p, except for decreased GAP activity. Interestingly, in $BFA1^{E438K}$ cells, the MEN could be regulated with nearly wild type kinetics at physiological temperature, as well as in response to various checkpoint-activating signals, but the cells were more sensitive to spindle damage than wild type. These results suggest that the GAP activity of Bfa1p-Bub2p is responsible for the mitotic arrest caused by spindle damage and Bfa1p overproduction. In addition, the viability of cdc5-2 ${\Delta}bfa1 $ cells was not reduced by $BFA1^{E438K}$, suggesting that Cdc5p also regulates Bfa1p to activate mitotic exit by other mechanism(s), besides phosphorylation.

Controlled Lysis of Lipase-Producing Recombinant E. coli by Phage Induction (Lipase를 생산하는 재조합 대장균의 phage에 의한 조절적 용균)

  • 문윤희;구윤모
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.575-581
    • /
    • 1995
  • A plasmid pTTY2, containing the lipase-producing gene, was used to transform an E. coli phage lysogen, P90c/$\phi$434, into the lipase-producing lysogen, P90c/$\phi$434/pTTY2. After the overproduction of lipase by the isopropylthio-${\beta}$-D-galactoside induction, the prophage $\phi$434 in the chromosome of the host cell was induced by the milomycin C addition or ultraviolet irradiation to lyse the host cell. The optimum operating conditions, such as the isopropylthio-${\beta}$-D-galactoside induction period and the phage induction timing, were sought for the efficient cell lysis in the same fermenter. Effective cell lysis occurred at the earlier exponential growth phase with the isopropylthio-${\beta}$-D-galactoside induction period of 1 hour. The amount of the lipase production was qualitatively measured by the halo size in Luria-Bertani agar medium containing tributyrin and Rhodamine B plate.

  • PDF

Development of Doxorubicin overproducing Streptomyces Strain using Protoplast Regeneration (방선균 원형질체 재생에 의한 독소루비신 고생산성 균주개발)

  • 박희섭;박현주;김용훈;임상민;김동일;류욱상;김상린;김응수
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.289-293
    • /
    • 2003
  • Doxorubicin is an anthracycline-family polyketide compound with a very potent anti-cancer activity, typically produced by Streptomyces peucetius. In order to increase doxurubicin productivity, a semi-industrial doxorubicin-producing Streptomyces strain named BR-Dox was cultured in a R2YE liquid medium containing CaCO$_3$, and then converted to a cell wall-free protoplast using lysozyme treatment method, followed by PEG-mediated cell wall regeneration. Among several protoplast-regenerated Streptomyces BR-Dox strains, two independent isolates named BR-Dox4 and BR-Dox6 were visually selected using thin layer chromatography (TLC) based on the pigment overproducing phenotype. Comparing with Streptomyces BR-Dox parental strain, two protoplast-regenerated strains, BR-Dox4 and BR-Dox6 exhibited 25.2% and 12.2% higher doxorubicin productivity analyzed by high pressure liquid chromatography (HPLC), respectively. This result suggests that a protoplast-regeneration of an antibiotics-producing Streptomyces strain should be a promising strain development approach for antibiotics overproduction in Streptomyces species.

Heterologous Expression of a Model Polyketide Pathway in Doxorubicin-overproducing Streptomyces Industrial Mutants (방선균 항생제 고생산 산업균주를 기반으로 한 모델 폴리케타이드의 이종숙주 발현)

  • Kim, Hye-Jin;Lee, Han-Na;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.10-16
    • /
    • 2012
  • The Streptomyces peucetius OIM (Overproducing Industrial Mutant) strain is a recursively-mutated and optimally-screened strain used for the industrial production of polyketide antibiotics, such as doxorubicin (DXR). Using the S. peucetius OIM mutant strain as a surrogate host, a model minimal polyketide pathway for aloesaponarin II, an actinorhodin shunt product, was cloned in a high-copy conjugative plasmid, followed by functional pathway expression and quantitative metabolite analysis. The level of aloesaponarin II production was noted as being significantly higher in the OIM strain than in the wild-type S. peucetius, as well as in the regulatory network-stimulated S. coelicolor mutant strain. Moreover, the aloesaponarin II production level was seen to be even higher in a down-regulator $wblA_{spe}$-deleted S. peucetius OIM strain, implying that the rationally-engineered S. peucetius OIM mutant strain could be used as an efficient surrogate host for the high expression of foreign polyketide pathways.

Orobol, A Derivative of Genistein, Inhibits Heat-Killed Propionibacterium acnes-Induced Inflammation in HaCaT Keratinocytes

  • Oh, Yunsil;Hwang, Hwan Ju;Yang, Hee;Kim, Jong Hun;Yoon Park, Jung Han;Kim, Jong-Eun;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1379-1386
    • /
    • 2020
  • Acne is a chronic skin disease that typically occurs in the teens and twenties, and its symptoms vary according to age, sex, diet, and lifestyle. The condition is characterized by hyperproliferation of keratinocytes in the epidermis, sebum overproduction, excessive growth of Propionibacterium acnes, and P. acnes-induced skin inflammation. Interleukin (IL)-1α and IL-6 are predominant in the inflammatory lesions of acne vulgaris. These cytokines induce an inflammatory reaction in the skin in the presence of pathogens or stresses. Moreover, IL-1α accelerates the production of keratin 16, which is typically expressed in wounded or aberrant skin, leading to abnormalities in architecture and hyperkeratinization. Orobol (3',4',5,7-tetrahydroxyisoflavone) is a metabolite of genistein that inhibited the P. acnes-induced increases in IL-6 and IL-1α levels in human keratinocytes (HaCaTs) more effectively compared with salicylic acid. In addition, orobol decreased the IL-1α and IL-6 mRNA levels and inhibited the phosphorylation of inhibitor of kappa-B kinase, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, and mitogen-activated protein kinase induced by P. acnes. Finally, the expression of Ki67 was decreased by orobol. Thus, orobol ameliorated the inflammation and hyperkeratinization induced by heat-killed P. acnes and thus has potential for use in functional foods and cosmetics.