• 제목/요약/키워드: overproduction

검색결과 265건 처리시간 0.028초

여주 활성 물질 Protocatechuic Acid의 신경세포의 산화적 스트레스에 대한 개선 효과 (The Protective Effects of Protocatechuic Acid from Momordica charantia against Oxidative Stress in Neuronal Cells)

  • 최정란;최지명;이상현;조계만;조은주;김현영
    • 생약학회지
    • /
    • 제45권1호
    • /
    • pp.11-16
    • /
    • 2014
  • Protocatechuic acid is an active phenolic acid compound from Momordica charantia. In this study, we investigated the protective effect of protocatechuic acid against oxidative stress under cellular system using C6 glial cell. The oxidative stress was induced by hydrogen peroxide ($H_2O_2$) and amyloid beta 25-35 ($A{\beta}_{25-35}$), and they caused the decrease of cell viability and overproduction of reactive oxygen species (ROS). However, the treatment of protocatechuic acid significantly elevated the decreased cell viability and inhibited the overproduction of ROS by $H_2O_2$. In addition, protocatechuic acid significantly recovered the cellular damage induced by $A{\beta}_{25-35}$. In particular, protocatechuic acid at the concentration $10{\mu}g/mL$ decreased the elevated ROS level to normal level. These results indicate that protocatechuic acid may have neuroprotective effect through attenuating oxidative stress.

일반 E.coli에서 tac Promoter에 의한 온도감수성 $cI_{857}$ Repressor의 대량생산 (Therrnosensitive $cI_{857}$ Repressor Overproduction by tac Promoter in General E. coli)

  • 강상모;권태종;정호권
    • 한국미생물·생명공학회지
    • /
    • 제19권1호
    • /
    • pp.45-51
    • /
    • 1991
  • $cI_{857}$ repressor 단백질을 대량으로 얻기위해 tac promoter 하류에 $cI_{857}$ 구조 유전자를 삽입하는 것을 검토하였다. $cI_{857}$ 유전자를 포함하는 DNA 단편을 plasmid PUC12를 이용하여 대량생산후, HphI으로 부분 분해하여 $cI_{857}$ 구조 유전자만을 취하고, tac promoter 하류에 삽입시켰다. 그리고 $\lambda$ phage $cI_{90}$에 의해 $30^{\circ}C$에서는 용원성을, $42^{\circ}C$에서는 용균성을 보이는 균주를 선택함으로 tac promoter 하류에 cI857 구조 유전자가 삽입된 pDR540-$cI_{857}$을 선택할 수가 있었다. 이 plasmid는 $lacI^q$ JM103 뿐만 아니라 각종 E.coli에서 $cI_{857}$-repressor 단백질을 균체 단백질당 약 17까지 생산하였다.

  • PDF

Quercetin Derivatives from Siegesbeckia glabrescens Inhibit the Expression of COX-2 Through the Suppression of NF-κB Activation in Microglia

  • Lim, Hyo-Jin;Li, Hua;Kim, Jae-Yeon;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.27-32
    • /
    • 2011
  • The activation of microglia induces the overproduction of inflammatory mediators that are responsible for the neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. The large amounts of prostaglandin $E_2$ ($PGE_2$) produced by inducible cyclooxygenase (COX-2) is one of the main inflammatory mediators that can contribute to neurodegeneration. The inhibition of COX-2 thus may provide therapeutic strategy for the treatment of neurodegenerative diseases. From the activity-guided purification of EtOAc soluble fraction of Siegesbeckia glabrescens, four compounds were isolated as inhibitors of $PGE_2$ production in LPS-activated microglia. Their structures were determined as 3, 4'-dimethylquercetin (1), 3, 7-dimethylquercetin (2), 3-methylquercetin (3) and 3, 7, 4'-trimethylquercetin (4) by the mass and NMR spectral data analysis. The compounds 1-4 showed dose-dependent inhibition of $PGE_2$ production in LPS-activated microglia with their $IC_{50}$ values of 7.1, 4.9, 4.4, $12.4\;{\mu}M$ respectively. They reduced the expression of protein and mRNA of COX-2 through the inhibition of I-${\kappa}B{\alpha}$ degradation and NF-$\kappa}B$ activity that were correlated with the inactivation of p38 and ERK. Therefore the active compounds from Siegesbeckia glabrescens may have therapeutic effects on neuro-inflammatory diseases through the inhibition of overproduction of $PGE_2$ and suppression of COX-2 overexpression.

A Curcuminoid and Two Sesquiterpenoids from Curcuma zedoaria as Inhibitors of Nitric Oxide Synthesis in Activated Macrophages

  • Jang, Mi-Kyung;Lee, Hwa-Jin;Kim, Ji-Sun;Ryu , Jae-Ha
    • Archives of Pharmacal Research
    • /
    • 제27권12호
    • /
    • pp.1220-1225
    • /
    • 2004
  • The overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) is known to be responsible for vasodilation and hypotension observed in septic shock and inflammation. Inhibitors of iNOS, thus, may be useful candidates for the treatment of inflammatory diseases accompanied by overproduction of NO. In the course of screening oriental anti-inflammatory herbs for the inhibitory activity of NO synthesis, a crude methanolic extract of Curcuma zedoaria exhibited significant activity. The activity-guided fractionation and repetitive chromatographic procedures with the EtOAc soluble fraction allowed us to isolate three active compounds. They were identified as 1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one (1), procurcumenol (2) and epiprocurcumenol (3) by spectral data analyses. Their concentrations for the 50% inhibition of NO production $(IC_{50})$ in lipopolysaccharide (LPS)-activated macrophages were 8, 75, 77 ${\mu}M$, respectively. Compound 1 showed the most potent inhibitory activity for NO production in LPS-activated macrophages, while the epimeric isomers, compound 2 and 3 showed weak and similar potency. Inhibition of NO synthesis by compound 1 was very weak when activated macrophages were treated with 1 after iNOS induction. In the immunoblot analysis, compound 1 suppressed the expression of iNOS in a dose-dependent manner. In summary, 1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one from Curcuma zedoaria inhibited NO production in LPS-activated macrophages through suppression of iNOS expression. These results imply that the traditional use of C. zedoaria rhizome as anti-inflammatory drug may be explained at least in part, by inhibition of NO production.

Identification of a Gene Involved in the Negative Regulation of Pyomelanin Production in Ralstonia solanacearum

  • Ahmad, Shabir;Lee, Seung Yeup;Khan, Raees;Kong, Hyun Gi;Son, Geun Ju;Roy, Nazish;Choi, Kihyuck;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권9호
    • /
    • pp.1692-1700
    • /
    • 2017
  • Ralstonia solanacearum causes bacterial wilt in a wide variety of host plant species and produces a melanin-like blackish-brown pigment in stationary phase when grown in minimal medium supplemented with tyrosine. To study melanin production regulation in R. solanacearum, five mutants exhibiting overproduction of melanin-like pigments were selected from a transposon (Tn) insertion mutant library of R. solanacearum SL341. Most of the mutants, except one (SL341T), were not complemented by the original gene or overproduced melanins. SL341T showed Tn insertion in a gene containing a conserved domain of eukaryotic transcription factor. The gene was annotated as a hypothetical protein, given its weak similarity to any known proteins. Upon complementation with its original gene, the mutant strains reverted to their wild-type phenotype. SL341T produced 3-folds more melanin at 72 h post-incubation compared with wild-type SL341 when grown in minimal medium supplemented with tyrosine. The chemical analysis of SL341T cultural filtrate revealed the accumulation of a higher amount of homogentisate, a major precursor of pyomelanin, and a lower amount of dihydroxyphenylalanine, an intermediate of eumelanin, compared with SL341. The expression study showed a relatively higher expression of hppD (encoding hydroxyphenylpyruvate dioxygenase) and lower expression of hmgA (encoding homogentisate dioxygenase) and nagL (encoding maleylacetoacetate isomerase) in SL341T than in SL341. SL341 showed a significantly higher expression of tyrosinase gene compared with SL341T at 48 h post-incubation. These results indicated that R. solanacearum produced both pyomelanin and eumelanin, and the novel hypothetical protein is involved in the negative regulation of melanin production.

Increase of a Fibrinolytic Enzyme Production through Promoter Replacement of aprE3-5 from Bacillus subtilis CH3-5

  • Yao, Zhuang;Meng, Yu;Le, Huong Giang;Lee, Se Jin;Jeon, Hye Sung;Yoo, Ji Yeon;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.833-839
    • /
    • 2021
  • Bacillus subtilis CH3-5 isolated from cheonggukjang secretes a 28 kDa protease with a strong fibrinolytic activity. Its gene, aprE3-5, was cloned and expressed in a heterologous host (Jeong et al., 2007). In this study, the promoter of aprE3-5 was replaced with other stronger promoters (Pcry3A, P10, PSG1, PsrfA) of Bacillus spp. using PCR. The constructed chimeric genes were cloned into pHY300PLK vector, and then introduced into B. subtilis WB600. The P10 promoter conferred the highest fibrinolytic activity, i.e., 1.7-fold higher than that conferred by the original promoter. Overproduction of the 28 kDa protease was confirmed using SDS-PAGE and fibrin zymography. RT-qPCR analysis showed that aprE3-5 expression was 2.0-fold higher with the P10 promoter than with the original promoter. Change of the initiation codon from GTG to ATG further increased the fibrinolytic activity. The highest aprE3-5 expression was observed when two copies of the P10 promoter were placed in tandem upstream of the ATG initiation codon. The construct with P10 promoter and ATG and the construct with two copies of P10 promoter in tandem and ATG exhibited 117% and 148% higher fibrinolytic activity, respectively, than that exhibited by the construct containing P10 promoter and GTG. These results confirmed that significant overproduction of a fibrinolytic enzyme can be achieved by suitable promoter modification, and this approach may have applications in the industrial production of AprE3-5 and related fibrinolytic enzymes.

Shear Effects on Production of Lignin Peroxidase by Phanerochaete chrysosporium

  • Sang, Byeong-In;Kim, Yong-Hwan;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제1권1호
    • /
    • pp.26-31
    • /
    • 1996
  • Since biosynthesis of lignin peroxidase from Phanerochaete chrysosporium was known to be sensitive to shear, it is interesting to understand the effects of the shear sensitivity for the overproduction of lignin peroxidase. In stirred-tank fermentor, the shear-sensitivity in lignin peroxidase biosynthesis was quantified by using Kolmogorov length scale. It was found that agitation at 80$\mu$m Kolmogorov length scale is advantageous for the production of lignin peroxidase from P. chrysosporium. To overcome the shear sensitivity in lignin peroxidase biosynthesis caused by the agitation,P. chrysosporium was immobilized on various solid carriers. The nylon-immobilized P. chrysosporium was chosen in the present study as a way to overcome the shear sensitivity at the ranges of above 50$\mu$m Kolmogorov length scale. The adhesion force between immobilized cell and carrier can be predicted by thermodynamic approach and used as a criteria to select an adequate carrier materials for immobilization.

  • PDF

재조합 Escherichia coli 시스템을 이용한 재조합 말라리아 항원의 발현 최적화 연구

  • 홍성희;박도영;황영보;박현;황현아
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.711-714
    • /
    • 2001
  • 본 연구에서는 말라리아 항원의 생물학적 대량 생산 공정을 디자인하기 위하여 자체 개발한 재조합 E. coli 시스템의 여러 가지 조업 조건들, 즉 균체 성장과 외래 단백질의 유도 발현에 영향을 미치는 초기 배지 pH, 유도 발현 이후의 조업 온도 및 타이밍 , 그러고 기간 등을 조사함과 동시에 최적 배양 전략을 탐색하였다.

  • PDF

재조합 대장균에서 외래단백질 발현을 위한 기술개발 (Improved Technologies to Produce Heterologous Proteins in Recombinant Escherichia coli.)

  • 박용철;권대혁;이대희;서진호
    • KSBB Journal
    • /
    • 제16권1호
    • /
    • pp.1-10
    • /
    • 2001
  • Escherichia coli has been used as an expression work horse for foreign genes. This article summarized recent development in genetic engineering techniques for overproduction of medical proteins and industrial enzymes. Special emphasis was placed upon research activities concerning folding and refolding of inclusion bodies at genetic and fermentation levels. Plasmid and mRNA stabilization, development of strong inducible promoters, modification of translational elements and reduction of rpoteolytic degradation were carried out to elevate an expression level of a target protein. Optimization of culture conditions, improvement of denaturation and renaturation steps and coexpression of molecular chaperones or foldase were accomplished to produce active proteins in soluble form. Fusion protein systems with selective separation and surface display technology were also performed in an effort to make the E. coli expression system more effective and versatile.

  • PDF

영양요구성주 및 유사체 내성 대장균 변이주에 의한 L-스레오닌 생산 (Production of L-Threonine by Auxotrophs and Analogue Resistant Mutants of Escherichia coli)

  • 이진호;오종원;현형환;이현환
    • 한국미생물·생명공학회지
    • /
    • 제19권6호
    • /
    • pp.583-587
    • /
    • 1991
  • 대장균 W3110으로부터 NTG 및 UV를 사용하여 여러 단계의 돌연변이 실험을 거치면서 스레오닌 고생산균주인 대장균 TF427를 선별하였다. 선별된 변이주는 스레오닌 유사체인 AHV 내성, 메치오닌 및 이소루이신 요구성을 특징으로 한다. 5-L 발효조 실험에서 44시간 발효하였을 때 46.5g/l의 스레오닌이 생산되었다. 효모분석에 의하면, TF427의 아스파토키나아제 I의 활성은 스레오닌에 의해 저해받지 않았으며, 이 효소의 합성은 스레오닌과 이소루이신에 의해 억제를 받지 않았다.

  • PDF