• Title/Summary/Keyword: overloading control effectiveness

Search Result 5, Processing Time 0.019 seconds

Overloading Control Effectiveness of Overweight Enforcement System using High-Speed Weigh-In-Motion (고속축중기를 활용한 과적단속시스템의 과적 억제효과 분석)

  • Kwon, Soon-Min;Jung, Young-Yoon;Lee, Kyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.179-188
    • /
    • 2012
  • PURPOSES: The aim of this study is to analyze overloading control effectiveness of enforcing overweighted vehicles using HS-WIM (High-Speed Weigh-in-Motion) at main lane of expressway. METHODS: To analyze the weight distribution statistically, HS-WIM system should has an appropriate weighing accuracy. Thus, the weighing accuracy of the two HS-WIM systems was estimated by applying European specifications and ASTM (American Standards for Testing and Materials) for WIM in this study. Based on the results of accuracy test, overweight enforcement system has been operated at main lanes of two expressway routes in order to provide weight informations of overweighted vehicle in real time for enforcement squad. To evaluate the overloading control effectiveness with enforcement, traffic volume and axle loads of trucks for two months at the right after beginning of the enforcement were compared with data set for same periods before the enforcement. RESULTS: As the results of weighing accuracy test, both WIM systems were accepted to the most precise type that can be useful to applicate not only statistical purpose but enforcing on overweight vehicles directly. After the enforcement, the rate of overweighted trucks that weighed over enforcement limits had been decreased by 27% compared with the rate before the enforcement. Especially, the rate of overweighted trucks that weighed over 48 tons had been decreased by 91%. On the other hand, in counterpoint to decrease of the overweighted vehicle, the rate of trucks that weighed under enforcement limits had been increased by 7%. CONCLUSIONS: From the results, it is quite clear that overloading has been controlled since the beginning of the enforcement.

Special Protection and Control Scheme for Transmission Line Overloading Elimination Based on Hybrid Differential Evolution/Electromagnetism-Like Algorithm

  • Hadi, Mahmood Khalid;Othman, Mohammad Lutfi;Wahab, Noor Izzri Abd
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1729-1742
    • /
    • 2017
  • In designing System Protection Schemes (SPSs) in power systems, protecting transmission network against extreme undesired conditions becomes a significant challenge in mitigating the transmission line overloading. This paper presents an intelligent Special Protection and Control Scheme (SPCS) using of Differential Evolution with Adaptive Mutation (DEAM) approach to obtain the optimum generation rescheduling to solve the transmission line overloading problem in system contingency conditions. DEAM algorithm employs the attraction-repulsion idea that is applied in the electromagnetism-like algorithm to support the mutation process of the conventional Differential Evolution (DE) algorithm. Different N-1 contingency conditions under base and increase load demand are considered in this paper. Simulation results have been compared with those acquired from Genetic Algorithm (GA) application. Minimum severity index has been considered as the objective function. The final results show that the presented DEAM method offers better performance than GA in terms of faster convergence and less generation fuel cost. IEEE 30-bus test system has been used to prove the effectiveness and robustness of the proposed algorithm.

A Study on Power Flow Control of UPFC by Series and Shunt Voltage Source Model (직.병렬전압원 모델에 의한 UPFC 전력조류제어에 관한 연구)

  • 정인학;김경신;정재길
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.21-30
    • /
    • 2001
  • In this paper, in the power system having UPFC(Unified Power Flow Controller) Power flow of certain line is controlled to desired value also power flow analysis algorithm is reposed considering power flow constraints which is capable of analysis power flow of all system. This algorithm is applied to controlling line-overloading problems and the method of is prosed. By applying this algorithm to controlling line-over loading the method of controlling UPFC is proposed and the effectiveness of controlling UPFC is proposed and the effectiveness of controlling UPFC is verified through the research of practical system. Also, the equation to set up an initial value of stories and shunt voltage source of UPFC is proposed for the effective power analysis.

  • PDF

Compensation of Voltage Drop Using the TSC-SVC in Electric Railway Power Supply System (전기철도 AT 급전시스템에서의 TSC-SVC를 이용한 전압강하 보상)

  • 정현수;방성원;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • Recently, power quality problems in AC high-Speed Railway system have been raised, because heavy train and its higher speed are required in addition to new control system by using the Electronic devices. The installation/operation of the Series Capacitor(SC) has been only a device far voltage drop in power system up to now. However, the sufficient effectiveness of compensating In voltage drop has not been proved yet because of technical limitationf SC, and harmonic resonance is attracting a attention as one of new issues. Several problems are expected such as vocational problems of a traction substation, and overloading caused by a new construction of electric railway and the in transport. Therefore, extension of power feeding the fault in the traction substation should be also considered. So this paper represents the application of TSC-SVC on the electric railway power feeding system as a device of voltage compensation, and the simulations are executed through PSCAD/EMTDC.

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani;Muhammad Kalimur ,Rahman;Mohammed A., Al-Osta;Omar S. Baghabra, Al-Amoudi
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.403-417
    • /
    • 2022
  • Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.