• Title/Summary/Keyword: overlapping decomposition

Search Result 38, Processing Time 0.022 seconds

Overlapping Sound Event Detection Using NMF with K-SVD Based Dictionary Learning (K-SVD 기반 사전 훈련과 비음수 행렬 분해 기법을 이용한 중첩음향이벤트 검출)

  • Choi, Hyeonsik;Keum, Minseok;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.234-239
    • /
    • 2015
  • Non-Negative Matrix Factorization (NMF) is a method for updating dictionary and gain in alternating manner. Due to ease of implementation and intuitive interpretation, NMF is widely used to detect and separate overlapping sound events. However, NMF that utilizes non-negativity constraints generates parts-based representation and this distinct property leads to a dictionary containing fragmented acoustic events. As a result, the presence of shared basis results in performance degradation in both separation and detection tasks of overlapping sound events. In this paper, we propose a new method that utilizes K-Singular Value Decomposition (K-SVD) based dictionary to address and mitigate the part-based representation issue during the dictionary learning step. Subsequently, we calculate the gain using NMF in sound event detection step. We evaluate and confirm that overlapping sound event detection performance of the proposed method is better than the conventional method that utilizes NMF based dictionary.

RECTANGULAR DOMAIN DECOMPOSITION METHOD FOR PARABOLIC PROBLEMS

  • Jun, Youn-Bae;Mai, Tsun-Zee
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.281-294
    • /
    • 2006
  • Many partial differential equations defined on a rectangular domain can be solved numerically by using a domain decomposition method. The most commonly used decompositions are the domain being decomposed in stripwise and rectangular way. Theories for non-overlapping domain decomposition(in which two adjacent subdomains share an interface) were often focused on the stripwise decomposition and claimed that extensions could be made to the rectangular decomposition without further discussions. In this paper we focus on the comparisons of the two ways of decompositions. We consider the unconditionally stable scheme, the MIP algorithm, for solving parabolic partial differential equations. The SOR iterative method is used in the MIP algorithm. Even though the theories are the same but the performances are different. We found out that the stripwise decomposition has better performance.

  • PDF

Effective Decentralized Sampled-Data Control for Nonlinear Systems in T-S' Form: Overlapping IDR Approach (타카기-수게노 형태의 비선형 시스템의 효율적 분산 샘플치 제어: 중복 지능형 디지털 재설계 접근법)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.94-99
    • /
    • 2012
  • This paper discusses a decentralized sampled-data control problem for large-scale nonlinear systems. The system is represented in Takagi-Sugeno's form. Next, we design a decentralized analog controller based on the overlapping decomposition technique. The final step is to apply the intelligent digital redesign scheme for converting the analog controller into the sampled-data one. Design condition is represented in terms of linear matrix inequalities. A simulation result is provided for the effectiveness of the proposed design method.

Accuracy Analysis of Parallel Method based on Non-overlapping Domain Decomposition Method (비중첩 영역 분할기법 기반 병렬해석의 정확도 분석)

  • Tak, Moonho;Song, Yooseob;Jeon, Hye-Kwan;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.301-308
    • /
    • 2013
  • In this paper, an accuracy analysis of parallel method based on non-overlapping domain decomposition method is carried out. In this approach, proposed by Tak et al.(2013), the decomposed subdomains do not overlap each other and the connection between adjacent subdomains is determined via simple connective finite element named interfacial element. This approach has two main advantages. The first is that a direct method such as gauss elimination is available even in a singular problem because the singular stiffness matrix from floating domain can be converted to invertible matrix by assembling the interfacial element. The second is that computational time and storage can be reduced in comparison with the traditional finite element tearing and interconnect(FETI) method. The accuracy of analysis using proposed method, on the other hand, is inclined to decrease at cross points on which more than three subdomains are interconnected. Thus, in this paper, an accuracy analysis for a novel non-overlapping domain decomposition method with a variety of subdomain numbers which are interconnected at cross point is carried out. The cause of accuracy degradation is also analyze and establishment of countermeasure is discussed.

A DOMAIN DECOMPOSITION PRECONDITIONER FOR STEADY GROUNDWATER FLOW IN POROUS MEDIA

  • Ghahreman, N.;Kerayechian, A.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.773-785
    • /
    • 2000
  • In this paper an algorithm is presented based on the additive Schwarz method for steady groundwater flow in a porous medium. The subproblems in the algorithm correspond to the problem on a coarse grid and some overlapping subdomains. It will be shown that the rate of convergence is independent of the mesh parameters and discontinuities of the coefficients, and depends on the overlap ratio.

Reliability analysis of wind-excited structures using domain decomposition method and line sampling

  • Katafygiotis, L.S.;Wang, Jia
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.37-53
    • /
    • 2009
  • In this paper the problem of calculating the probability that the responses of a wind-excited structure exceed specified thresholds within a given time interval is considered. The failure domain of the problem can be expressed as a union of elementary failure domains whose boundaries are of quadratic form. The Domain Decomposition Method (DDM) is employed, after being appropriately extended, to solve this problem. The probability estimate of the overall failure domain is given by the sum of the probabilities of the elementary failure domains multiplied by a reduction factor accounting for the overlapping degree of the different elementary failure domains. The DDM is extended with the help of Line Sampling (LS), from its original presentation where the boundary of the elementary failure domains are of linear form, to the current case involving quadratic elementary failure domains. An example involving an along-wind excited steel building shows the accuracy and efficiency of the proposed methodology as compared with that obtained using standard Monte Carlo simulations (MCS).

Blind Color Image Watermarking Based on DWT and LU Decomposition

  • Wang, Dongyan;Yang, Fanfan;Zhang, Heng
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.765-778
    • /
    • 2016
  • In watermarking schemes, the discrete wavelet transform (DWT) is broadly used because its frequency component separation is very useful. Moreover, LU decomposition has little influence on the visual quality of the watermark. Hence, in this paper, a novel blind watermark algorithm is presented based on LU transform and DWT for the copyright protection of digital images. In this algorithm, the color host image is first performed with DWT. Then, the horizontal and vertical diagonal high frequency components are extracted from the wavelet domain, and the sub-images are divided into $4{\times}4$ non-overlapping image blocks. Next, each sub-block is performed with LU decomposition. Finally, the color image watermark is transformed by Arnold permutation, and then it is inserted into the upper triangular matrix. The experimental results imply that this algorithm has good features of invisibility and it is robust against different attacks to a certain degree, such as contrast adjustment, JPEG compression, salt and pepper noise, cropping, and Gaussian noise.

A study on N-dimensional quad-tree decomposition

  • Yi, Cheon-Hee;Yi, Jae-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • We have examined the problem of the number of quad-tree blocks that an n-dimensional rectangle will be decomposed into on the average. the contribution of this paper are both practical and theoretical. In this paper, we develops the overlapping multi-scale models and the region quad-tree models which is useful in computer graphics animation, image processing, pattern recognition and also for modeling three dimensional objects. These models, which represent something of a conceptual departure from other models developed for multi-scale framework were developed with the specific interest of producing smooth estimates.

  • PDF

Identification of N:M corresponding polygon pairs using a graph spectral method (Graph spectral 기법을 이용한 N:M 대응 폴리곤쌍 탐색)

  • Huh, Yong;Yu, Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.11-13
    • /
    • 2010
  • Combined with the indeterminate boundaries of spatial objects, n:m correspondences makes an object-based matching be a complex problem. In this study, we model the boundary of a polygon object with fuzzy model and describe their overlapping relations as a weighted bipartite graph. Then corresponding pairs including 1:0, 1:1, 1:n and n:m relations are identified using a spectral singular value decomposition.

  • PDF

Video Sequence Matching Using Normalized Dominant Singular Values

  • Jeong, Kwang-Min;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.785-793
    • /
    • 2009
  • This paper proposes a signature using dominant singular values for video sequence matching. By considering the input image as matrix A, a partition procedure is first performed to separate the matrix into non-overlapping sub-images of a fixed size. The SVD(Singular Value Decomposition) process decomposes matrix A into a singular value-singular vector factorization. As a result, singular values are obtained for each sub-image, then k dominant singular values which are sufficient to discriminate between different images and are robust to image size variation, are chosen and normalized as the signature for each block in an image frame for matching between the reference video clip and the query one. Experimental results show that the proposed video signature has a better performance than ordinal signature in ROC curve.

  • PDF