• 제목/요약/키워드: overlap phase

Search Result 79, Processing Time 0.021 seconds

Method for Maximal Utilization of Idle Links for Fast Load Balancing (신속한 부하균등화를 위한 휴지링크의 최대 활용방법)

  • Im, Hwa-Gyeong;Jang, Ju-Uk;Kim, Seong-Cheon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.12
    • /
    • pp.632-641
    • /
    • 2001
  • In this paper, we introduce new methods for hiding computation overheads involved in load redistributing for parallel computer of hypercube, mesh and tree topologies. The basic idea is either coalescing some phases of load redistributing to overlap the transfer on different links or dividing each phase into steps to pipeline the transfer of load unit by unit for maximum utilization of links. They proved effective in making links busy transmitting load as soon as possible, hence reducing the computation overheads involved in balancing. Proposed techniques experimented on hypercube, mesh or tree topologies reduce communication overheads by 20% to 50% compared with known methods.

  • PDF

Conformational Preference of Pseudo-Proline Dipeptide in the Gas Phase and Solutions

  • Park, Hae-Sook;Kang, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.74-74
    • /
    • 2003
  • We report here the results on N-acetyl-N'-methylamide of oxazolidine (Ac-Oxa-NHMe) calculated using the ab initio molecular orbital method with the self-consistent reaction field (SCRF) theory at the HF level of theory with the 6-3l+G(d) basis set. The displacement of the $\square$-CH$_2$ group in proline ring by oxygen atom has affected the structure of proline, cis$\^$∼/ trans equilibrium, and rotational barrier. The up-puckered structure is found to be prevalent for the trans conformers of the Oxa amide. The higher cis populations of the Oxa amide can be interpreted due to the longer distance between the acetyl methyl group and the 5-methylene group of the ring for the trans conformer of the Oxa amide than that of the Pro amide. The changes in charge of the prolyl nitrogen and the decrease in electron overlap of the C$\^$∼/ N bond for TS structures seem to play a role in lowering rotational barriers of the Oxa amide compared to that of the Pro amide. The calculated preferences for cis conformers in the order of Oxa > Pro amides and for trans-to-cis rotational barriers in the order of Pro > Oxa amide in water are consistent with experimental results on Oxa-containing peptides. The pertinent distance between the prolyl nitrogen and the N$\^$∼/ H amide group to form a hydrogen bond might indicate that this intramolecular hydrogen bond could contribute in stabilizing the TS structures of Oxa and Pro amides and play a role in prolyl isomerization.

  • PDF

Recombinant production of human glucagon-like peptide-1 mutant (인간 Glucagon-like Peptide-1 변이체의 재조합 생산)

  • Kim, Sung-Gun;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.237-243
    • /
    • 2014
  • Human Glucagon like peptide-1 (GLP-1) is an incretin hormone that promotes secretion of insulin. In order to eliminate the formation of the soluble aggregate, Ala19 in GLP-1 was substituted with Thr, resulting in a GLP-1 mutant GLP-1A19T. The gene synthesis of GLP-1A19T and the fusion of 6-lysine tagged ubiquitin gene were accomplished by using the overlap extension polymerase chain reaction. The ubiquitin fused GLP-1A19T (K6UbGLP-1A19T) is expressed as form of inclusion body with little formation of the soluble aggregation in recombinant E. coli. In order to produce K6UbGLP-1A19T in large amounts, fed-batch fermentation was carried out in a pH-stat feeding strategy. Maximum dry cell weight of 87.7 g/L and 20.4% of specific K6UbGLP-1A19T content were obtained. Solid-phase refolding using a cation exchanger was carried out to renature K6UbGLP-1A19T. The refolded K6UbGLP-1A19T aggregated little and was released GLP-1A19T by on-column cleavage with ubiquitin-specific protease-1. The molecular mass of GLP-1A19T showed an accurate agreement with its theoretical molecular mass.

Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere (해수분위기에서 스테인리스강 배관 소켓 용접부의 선택적 부식)

  • Boo, Myung-Hwan;Lee, Jang-Wook;Lee, Jong-Hoon
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.224-230
    • /
    • 2020
  • Stainless steel has excellent corrosion resistance. The drawback is that pitting occurs easily due to the concentration of chloride. In addition, corrosion of socket weld, which is structurally and chemically weaker than the other components of the pipe, occurs rapidly. Since these two phenomena overlap, pinhole leakage occurs frequently in the seawater pipe socket welds made of stainless steel at the power plants. To analyze this specific corrosion, a metallurgical analysis of the stainless steel socket welds, where the actual corrosion occurred during the power plant operation, was performed. The micro-structure and chemical composition of each socket weld were analyzed. In addition, selective corrosion of the specific micro-structure in a mixed dendrite structure comprising γ-austenite (gamma-phase iron) and δ-ferrite (iron at high temperature) was investigated based on the characteristic micro-morphology and chemical composition of the corroded area. Finally, the different corrosion stages and characteristics of socket weld corrosion are summarized.

Selecting Characteristic Raman Wavelengths to Distinguish Liquid Water, Water Vapor, and Ice Water

  • Park, Sun-Ho;Kim, Yong-Gi;Kim, Duk-Hyeon;Cheong, Hai-Du;Choi, Won-Seok;Lee, Ji-In
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.209-214
    • /
    • 2010
  • The Raman shift of water vapor is 3657 $cm^{-1}$, and this Raman signal can be easily separated from other Raman signals or elastic signals. However, it is difficult to make simultaneous Raman measurements on the three phases of water, namely, ice water, liquid water, and water vapor. This is because we must consider the overlap between their Raman spectra. Therefore, very few groups have attempted to make Raman simultaneous measurements even on two elements (water vapor and liquid water, or water vapor and ice water). We have made an effort to find three characteristic Raman wavelengths that correspond to the three phases of water after measuring full Raman spectra of water on particular days that are rainy, snowy or clear. Finally, we have found that the 401-nm, 404-nm, and 408-nm wavelengths are the most characteristic Raman wavelengths that are representative of the water phases when we are using the 355-nm laser wavelength for making measurements.

Phenotypes of allergic diseases in children and their application in clinical situations

  • Lee, Eun;Hong, Soo-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.9
    • /
    • pp.325-333
    • /
    • 2019
  • Allergic diseases, including allergic rhinitis, asthma, and atopic dermatitis, are common heterogeneous diseases that encompass diverse phenotypes and different pathogeneses. Phenotype studies of allergic diseases can facilitate the identification of risk factors and their underlying pathophysiology, resulting in the application of more effective treatment, selection of better treatment responses, and prediction of prognosis for each phenotype. In the early phase of phenotype studies in allergic diseases, artificial classifications were usually performed based on clinical features, such as triggering factors or the presence of atopy, which can result in the biased classification of phenotypes and limit the characterization of heterogeneous allergic diseases. Subsequent phenotype studies have suggested more diverse phenotypes for each allergic disease using relatively unbiased statistical methods, such as cluster analysis or latent class analysis. The classifications of phenotypes in allergic diseases may overlap or be unstable over time due to their complex interactions with genetic and encountered environmental factors during the illness, which may affect the disease course and pathophysiology. In this review, diverse phenotype classifications of allergic diseases, including atopic dermatitis, asthma, and wheezing in children, allergic rhinitis, and atopy, are described. The review also discusses the applications of the results obtained from phenotype studies performed in other countries to Korean children. Consideration of changes in the characteristics of each phenotype over time in an individual's lifespan is needed in future studies.

Quantitative Frameworks for Multivalent Macromolecular Interactions in Biological Linear Lattice Systems

  • Choi, Jaejun;Kim, Ryeonghyeon;Koh, Junseock
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.444-453
    • /
    • 2022
  • Multivalent macromolecular interactions underlie dynamic regulation of diverse biological processes in ever-changing cellular states. These interactions often involve binding of multiple proteins to a linear lattice including intrinsically disordered proteins and the chromosomal DNA with many repeating recognition motifs. Quantitative understanding of such multivalent interactions on a linear lattice is crucial for exploring their unique regulatory potentials in the cellular processes. In this review, the distinctive molecular features of the linear lattice system are first discussed with a particular focus on the overlapping nature of potential protein binding sites within a lattice. Then, we introduce two general quantitative frameworks, combinatorial and conditional probability models, dealing with the overlap problem and relating the binding parameters to the experimentally measurable properties of the linear lattice-protein interactions. To this end, we present two specific examples where the quantitative models have been applied and further extended to provide biological insights into specific cellular processes. In the first case, the conditional probability model was extended to highlight the significant impact of nonspecific binding of transcription factors to the chromosomal DNA on gene-specific transcriptional activities. The second case presents the recently developed combinatorial models to unravel the complex organization of target protein binding sites within an intrinsically disordered region (IDR) of a nucleoporin. In particular, these models have suggested a unique function of IDRs as a molecular switch coupling distinct cellular processes. The quantitative models reviewed here are envisioned to further advance for dissection and functional studies of more complex systems including phase-separated biomolecular condensates.

A Study on the Visual Cognitive Characteristics of the Spatial Configuration in Children's Rehabilitation Hospitals - Focused on the Pediatric Rehabilitation Outpatient and Therapy Areas - (어린이 재활병원 공간구조의 시지각적 특성 연구 - 소아재활 외래진료부 및 재활치료부 영역을 중심으로 -)

  • Cho, Min-Jung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.10
    • /
    • pp.83-94
    • /
    • 2018
  • In many theoretical and empirical studies on the design issues of therapeutic healthcare facilities, spatial configuration that promotes users' wayfinding behavior, has been emphasized as a significant factor to mitigate stressful experiences and to enhance restorative quality in the healthcare environment. This is also applicable to the healthcare setting for children. However, not much evidence has been reported with regard to the relationship between spatial configuration and wayfinding behaviors in this specific setting. Moreover, healthcare facilities for children with physical disabilities need more attention to provide easy wayfinding due to various physical restrictions. The aim of this study is therefore, to unfold the relationship between spatial configuration and visual cognitive qualities of outpatient spaces in the selected children's rehabilitation hospitals in Seoul, by examining visual cognitive attributes such as visibility, accessibility, and intelligibility. In the first phase, the spatial layout of the hospitals was analyzed, with an emphasis on the major outpatient areas such as the entrance lobby, doctors' examination, and physical therapy zones. In the second phase, a space syntax tool was implemented to examine visual cognitive characteristics of the spatial configuration. The spatial configuration parameters measured were integration, integration core, visual isovist field continuity, correlation between integration and step depth, and the correlation between integration n and integration 3. As a result, the integration was higher in the hall type configuration. Circulation intersections acted mostly as integration cores for better visibility. Some areas showed the lack of continuity in the visual isovist fields overlap and irregular correlation between integration and step depth. The intelligibility was higher in the circulation area and social interaction spaces such as a cafe, reception waiting, and therapy waiting areas. Based on the analysis, design implication and possible future improvement were discussed to enhance wayfinding experiences in the hospitals for children with physical disabilities.

Ground Tracking Support Condition Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter (KPLO) in Lunar Orbit

  • Kim, Young-Rok;Song, Young-Joo;Park, Jae-ik;Lee, Donghun;Bae, Jonghee;Hong, SeungBum;Kim, Dae-Kwan;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.237-247
    • /
    • 2020
  • The ground tracking support is a critical factor for the navigation performance of spacecraft orbiting around the Moon. Because of the tracking limit of antennas, only a small number of facilities can support lunar missions. Therefore, case studies for various ground tracking support conditions are needed for lunar missions on the stage of preliminary mission analysis. This study analyzes the ground supporting condition effect on orbit determination (OD) of Korea Pathfinder Lunar Orbiter (KPLO) in the lunar orbit. For the assumption of ground support conditions, daily tracking frequency, cut-off angle for low elevation, tracking measurement accuracy, and tracking failure situations were considered. Two antennas of deep space network (DSN) and Korea Deep Space Antenna (KDSA) are utilized for various tracking conditions configuration. For the investigation of the daily tracking frequency effect, three cases (full support, DSN 4 pass/day and KDSA 4 pass/day, and DSN 2 pass/day and KDSA 2 pass/day) are prepared. For the elevation cut-off angle effect, two situations, which are 5 deg and 10 deg, are assumed. Three cases (0%, 30%, and 50% of degradation) were considered for the tracking measurement accuracy effect. Three cases such as no missing, 1-day KDSA missing, and 2-day KDSA missing are assumed for tracking failure effect. For OD, a sequential estimation algorithm was used, and for the OD performance evaluation, position uncertainty, position differences between true and estimated orbits, and orbit overlap precision according to various ground supporting conditions were investigated. Orbit prediction accuracy variations due to ground tracking conditions were also demonstrated. This study provides a guideline for selecting ground tracking support levels and preparing a backup plan for the KPLO lunar mission phase.

The Evaluation of Imaging Quality Depending the Shift of the Central Axis in FOCUS DWI Investigation (Focus DWI 검사에서 중심축 이동에 따른 화질 평가)

  • Kim, Younghwa;Jeong, Moontaeg;Choi, Namgil
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.631-636
    • /
    • 2018
  • The problem that the existing the magnetic resonance image (MRI) was prone to have not only long readout duration and low bandwidth in the phase-encode direction, but also geometric distortion was pointed out. The purpose of this study is to identify the usefulness of FOCUS-DWI through comparing FOCUS-DWI with the Conventional-DWI on a degree of uniformity and artifacts caused by the distance change in the central axis within the magnetic field. In terms of artifacts, there happened irregular striped artifacts in the Conventional-DWI technique, which in particular, more often arose in the central axis. Also, the overlap of imaging drastically increased. By contrast, there were no irregular striped artifacts in the FOCUS-DWI technique. In conclusion, it was found that the FOCUS-DWI technique was superior to the Conventional-DWI technique in terms of artifacts, the overlap of imaging, and a degree of uniformity. In addition, there was no difference of the change in distance from the central axis between the FOCUS-DWI technique and the Conventional-DWI technique. Thus, it is considered the FOCUS-DWI technique having less imaging distortion and high image quality will be highly clinically used.