• Title/Summary/Keyword: overlap of time

Search Result 332, Processing Time 0.032 seconds

Analysis of free field for Acoustic Anechoic Chamber based on Time Stretched Pulse (Time Stretched Pulse를 이용한 무향실 자유음장 분석)

  • Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.111-119
    • /
    • 2012
  • Time Stretched Pulse (TSP) is used for transmitting and analyzing the impulse signal over the designated spatial place. However, if transfer functions of transmitter and receiver are unknown, performance investigation of free field in temporal domain is barely possible due to the overlap between the direct and indirect signal from the space. Generally, the free field or hemi-free field is evaluated by the Annex A of ISO 3745 in which utilizing the inverse square law with one-third octave band signals. In this paper, the author performs analysis of free field via applying TSP with inverse square law and the results are compared with the one-third octave band signals. According to the analysis of deviation between the corresponding signal and inverse square law model, the proposed TSP method provides the comparable performance index to the one-third octave band signal with reduced measuring time. Provided that the pre-whitening can be implementable by employing the speaker and microphone transfer function, further analyses from TSP compression are able to be performed such as multipath separation from time domain data. The anechoic chamber used in this experiment is verified conformance with ISO 3745 for free field and hemi-free field condition for limited frequency of the signal.

Improvements of GC and HPLC Analyses in Solvent (Acetone-Butanol-Ethanol) Fermentation by Clostridium saccharobutylicum Using a Mixture of Starch and Glycerol as Carbon Source

  • Tsuey, Liew Shiau;Ariff, Arbakariya Bin;Mohamad, Rosfarizan;Rahim, Raha Abdul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • A study on the feasibility of using improved computer-controlled HPLC and GC systems was carried out to shorten the time needed for measuring levels of the substrates (glucose, maltose, and glycerol) and products (acetone, butanol ethanol, acetic acid, and butyric acid) produced by Clostridium saccharobutylicum DSM 13864 during direct fermentation of sago starch to solvent. The use of HPLC system with a single injection to analyse the composition of culture broth (substrates and products) during solvent fermentation was achieved by raising the column temperature to $80^{\circ}C$. Although good separation of the components in the mixture was achieved, a slight overlap was observed in the peaks for butyric acid and acetone. The shape of the peak obtained and the analysis time of 26.66 min were satisfactory at a fixed flow rate of 0.8mL/min. An improved GC system was developed, that was able to measure the products of solvent fermentation (acetone, butanol, ethanol, acetic acid, and butyric acid) within 19.28 min. Excellent resolution for each peak was achieved by adjusting the oven temperature to $65^{\circ}C$.

Phenotypes of allergic diseases in children and their application in clinical situations

  • Lee, Eun;Hong, Soo-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.9
    • /
    • pp.325-333
    • /
    • 2019
  • Allergic diseases, including allergic rhinitis, asthma, and atopic dermatitis, are common heterogeneous diseases that encompass diverse phenotypes and different pathogeneses. Phenotype studies of allergic diseases can facilitate the identification of risk factors and their underlying pathophysiology, resulting in the application of more effective treatment, selection of better treatment responses, and prediction of prognosis for each phenotype. In the early phase of phenotype studies in allergic diseases, artificial classifications were usually performed based on clinical features, such as triggering factors or the presence of atopy, which can result in the biased classification of phenotypes and limit the characterization of heterogeneous allergic diseases. Subsequent phenotype studies have suggested more diverse phenotypes for each allergic disease using relatively unbiased statistical methods, such as cluster analysis or latent class analysis. The classifications of phenotypes in allergic diseases may overlap or be unstable over time due to their complex interactions with genetic and encountered environmental factors during the illness, which may affect the disease course and pathophysiology. In this review, diverse phenotype classifications of allergic diseases, including atopic dermatitis, asthma, and wheezing in children, allergic rhinitis, and atopy, are described. The review also discusses the applications of the results obtained from phenotype studies performed in other countries to Korean children. Consideration of changes in the characteristics of each phenotype over time in an individual's lifespan is needed in future studies.

A Study on The Phenomenal Space in The Contemporary Architecture - Focus on the analysis of The architecture of Swiss architects - (현대 건축에서 나타난 현상적 공간에 관한 연구 - 스위스건축가 작품을 중심으로 -)

  • Lee, Kil-Ho;Lee, Jung-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.6
    • /
    • pp.79-87
    • /
    • 2013
  • The purpose of this study clarifies an expression characteristic of the phenomenal space. The architecture is an interface between human and nature. Nature presents herself as phenomena. Thus, the phenomenal space should be approached as the essence of architecture that is to accommodate nature. Phenomenon is related to everyday life and shares flow naturally within it. The phenomenon and everyday life form a relationship through the mediating elements that are time, place, and image. If these mediating elements are developed as spatialized elements, time becomes the converse, place becomes the overlap, and shape becomes the revealing. Also, spatial components that are substituted with these elements are void/solid, form, and materials. The relational characteristics of phenomenal space can be identified through these, and such characteristics are one-ness, continuity, and coincidence of opposites. Phenomenal space is expressed with spatial tones and accepted as spatial atmospheres. For the analysis, 15 works of swiss architects were selected to which spatial elements were applied. And It were composed that analysis by arranging these components as the relational network found that expression characteristics. Trough the analysis, It was found that expression characteristics of phenomenal space of the architecture of Swiss architects were prototypicality, primitiveness, and originality. As a results, It is considered that the role of the space that contains the value of everyday life, the value of the phenomenon is necessary.

Impact of Human Mobility on Social Networks

  • Wang, Dashun;Song, Chaoming
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.100-109
    • /
    • 2015
  • Mobile phone carriers face challenges from three synergistic dimensions: Wireless, social, and mobile. Despite significant advances that have been made about social networks and human mobility, respectively, our knowledge about the interplay between two layers remains largely limited, partly due to the difficulty in obtaining large-scale datasets that could offer at the same time social and mobile information across a substantial population over an extended period of time. In this paper, we take advantage of a massive, longitudinal mobile phone dataset that consists of human mobility and social network information simultaneously, allowing us to explore the impact of human mobility patterns on the underlying social network. We find that human mobility plays an important role in shaping both local and global structural properties of social network. In contrast to the lack of scale in social networks and human movements, we discovered a characteristic distance in physical space between 10 and 20 km that impacts both local clustering and modular structure in social network. We also find a surprising distinction in trajectory overlap that segments social ties into two categories. Our results are of fundamental relevance to quantitative studies of human behavior, and could serve as the basis of anchoring potential theoretical models of human behavior and building and developing new applications using social and mobile technologies.

Selecting Optimal Dressing Parameters of Ultra-precision Centerless Grinding Based on the Taguchi Methodology (다구찌 방법론에 근거한 초정밀 센터리스 연삭의 최적 드레싱 가공 조건 선정)

  • Chun Y.J;Lee J.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.108-113
    • /
    • 2005
  • In this study, rotary type diamond dressing system for ultra-precision centerless grinding for ferrule was developed at the first time and experiments were conducted with AE sensor and hall sensor system to verify the optimum dressing condition for ultra-precision centerless grinding for ferrule. The correlations with the condition of dressing are evaluated by AE signal analysis with root mean square (RMS) and frequency analysis. And current signals from hall sensor are also studied as a factor of dressing optimum condition selection. Dressing process was conducted to investigate the effects of depth of cut, rotating speed, and the number of overlap to select the optimum condition of rotary dressing system of ultra-precision centerless grinding machine for ferrule fabrication. In order to verify the optimum condition of dressing, AE and current signals were compared with the surface quality of dressing wheel and grinding wheel for ultra-precision ferrule grinding. All of these experiments were completed by Taguchi Methodology to reduce experimental time. Hence, the optimum condition of rotary dressing system for ultra-precision centerless grinding for ferrule fabrication can be selected following to the experiment result from signals of AE and hall sensor.

  • PDF

Performances of the Directional Control Solenoid Valve for a Combined Power Plant

  • Kim, Chul-Jin;Yun, Yu-Seong;Kim, Do-Tae;Lee, Il-Young
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.10-14
    • /
    • 2012
  • Recently, the combined power plants are refocused rapidly as a replaceable energy system of the nuclear power plant. The large turbine is revolved highly at 1800~3600 rpm. Thus, the turbine speed should be monitored with mechanical and electrical method for a safety. The electrical cutoff valve which blocks the flow channel with the electrical signal is with a built in. The aim of this study is to develop a manufacturing technology through by the localization of a solenoid actuated directional control valve. Especially the results show performances of the solenoid valve by the experiments and modeling and the reliability estimation. Applied load port pressure was changed rapidly on the form of a quadratic curve over time. And in the cases of square waveform when 0~100 V and 20~120 V input voltage, it was driven on a stable state until 13.4 Hz and 16.6 Hz, respectively. We think that this study will give useful data for the electricity safety system of the combined power plant gas turbine.

The Influence of Parameters Controlling Beam Position On-Sample During Deposition Patterning Process with Focused Ion Beam (빔 위치 관련 제어인자가 집속이온빔 패턴 증착공정에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.209-216
    • /
    • 2008
  • The application of focused ion beam (FIB) depends on the optimal interaction of the operation parameters between operating parameters which control beam and samples on the stage during the FIB deposition process. This deposition process was investigated systematically in C precursor gas. Under the fine beam conditions (30kV, 40nm beam size, etc), the effect of considered process parameters - dwell time, beam overlap, incident beam angle to tilted surface, minimum frame time and pattern size were investigated from deposition results by the design of experiment. For the process analysis, influence of the parameters on FIB-CVD process was examined with respect to dimensions and constructed shapes of single and multi- patterns. Throughout the single patterning process, optimal conditions were selected. Multi-patterning deposition were presented to show the effect of on-stage parameters. The analysis have provided the sequent beam scan method and the aspect-ratio had the most significant influence for the multi-patterning deposition in the FIB processing. The bitmapped scan method was more efficient than the one-by-one scan type method for obtaining high aspect-ratio (Width/Height > 1) patterns.

A Study on the Surface Treatment of Dental Implant using a Fiber Laser (파이버 레이저를 이용한 치과용 임플란트 표면처리에 관한 연구)

  • Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.915-928
    • /
    • 2011
  • Titanium for dental implant application has the superior properties of biocompatibility, specific strength, and corrosion resistance. However, it is extremely difficult to find a suitable surface treatment method for sufficient osseointegration with biological tissue/bone cell and implant surface. Surface treatment technology using laser has been researched as the way to increase surface area of implant. In this study, to develop the surface treatment process with improved adhesion between implant and bone cell at the same time for superior biocompatibility, pulsed laser beam was overlapped continuously for scribed surface morphology and determination of friction coefficient. As the results, surface area and friction coefficient was increased over 2 times by the comparison with sand blasting, which is used for the conventional method. In this time, the optimal condition for laser beam power and beam irradiation speed was 13 watt and 50 mm/sec, respectively.

Research for development of small format multi -spectral aerial photographing systems (PKNU 3) (소형 다중분광 항공촬영 시스템(PKNU 3호) 개발에 관한 연구)

  • 이은경;최철웅;서영찬;조남춘
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.143-152
    • /
    • 2004
  • Researchers seeking geological and environmental information, depend on remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, adverse weather conditions as well as equipment expense limit the ability to collect data anywhere and anytime. To allow for better flexibility in geological and environmental data collection, we have developed a compact, multi-spectral automatic Aerial Photographic system (PKNU2). This system's Multi-spectral camera can record visible (RGB) and infrared (NIR) band (3032*2008 Pixels) images Visible and infrared band images were obtained from each camera respectively and produced color-infrared composite images to be analyzed for the purpose of the environmental monitoring. However this did not provide quality data. Furthermore, it has the disadvantage of having the stereoscopic overlap area being 60% unsatisfied due to the 12 seconds of storage time of each data The PKNU2 system in contrast, photographed photos of great capacity Thus, with such results, we have been proceeding to develop the advanced PKNU2 (PKNU3) system that consists of a color-infrared spectral camera that can photograph in the visible and near-infrared bands simultaneously using a single sensor, a thermal infrared camera, two 40G computers to store images, and an MPEG board that can compress and transfer data to the computer in real time as well as be able to be mounted onto a helicopter platform.

  • PDF