• Title/Summary/Keyword: overflow velocity

Search Result 55, Processing Time 0.03 seconds

Protein Removal by a Foam Fractionator in Simulated Seawater Aquaculture System

  • Peng, Lei;Oh, Sung-Yong;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.269-275
    • /
    • 2003
  • Effects of different operating factors including superficial air velocity (SAV), hydraulic residence time (HRT), protein concentration, and foam overflow height on protein removal by a foam fractionator in simulated seawater aquaculture system were investigated. This experiment was conducted on batch and consecutive modes at different combinations of the affecting factors. The foam fractionator had a diameter of 20cm and a height of 120cm and the experiment was conducted with synthetic wastewater. In 5 consecutive trials, protein concentrations in culture tank water decreased faster when the foam fractionator was operated at higher SAVs and lower HRTs. In batch trials, protein removal rates increased with an increase in SAV but decreased with an increase in URT. Higher protein concentrations in the bulk solution resulted in higher protein removal rates. Protein concentrations in the collected foam condensates increased but the foam overflow rates decreased with the increase of foam overflow heights. The results of this experiment indicate that foam fractionation would be an effective way for protein removal in seawater aquaculture systems and the performance of the foam fractionator depends largely on the operating parameters, especially SAV.

Control of the Sediment in a Combined Sewer Using a Separation Wall

  • Lim, Bong Su;Kwon, Chung Jin;Kim, Do Young;Lee, Kuang Chun
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.71-75
    • /
    • 2013
  • This study is to evaluate the effects of the separation wall on the sediment quality and quantity in a combined sewer, by surveying the sewer overflow and sediments during a rainfall. Since the separation wall installed in the combined sewer separates the rainfall and the sewage, the flow rate of the sewage is increased, and the amount of the sediment deposited on the sewer is decreased. One sampling point was the outfall of Daesacheon with a separation wall, and the other was the outfall of Gwaryecheon without a separation wall, in Daejeon metropolitan city. The maximum control of the biochemical oxygen demand (BOD) overflow load was more than 38% in the Daesacheon point with the separation wall, during a rainfall of 0.11 mm/hr. The maximum control of the BOD overflow load was 24% in Gwaryecheon without a separation wall, during a rainfall of 1.0 mm/hr. According to the survey results of the sediment in the sewer, the discharged sediment deposited on the sewer in Gwaryecheon point was about 23% to 28% of the total suspended solid during the rainfall. In addition, the average velocity of sewage in the presence of sediment was about 0.30 m/s, and if the separation wall is installed, it was expected to be about 1.01 m/s, that is 3.4 times more than the same conditions, resulting in the reduction of the sediment deposit.

Analysis of Hydraulic effect on Removing Side Overflow Type Structures in Woo Ee Stream Basin (우이천 유역의 횡단 월류형 구조물 철거에 의한 수리영향 분석)

  • Moon, Young-Il;Yoon, Sun-Kwon;Chun, Si-Young;Kim, Jong-Suk
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.687-690
    • /
    • 2008
  • Currently, Stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many reach uppermost limit. In this study, FLOW-3D using CFD(Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-\varepsilon$, RNG(Renomalized Group Theory) $k-\varepsilon$ and LES(Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the side overflow type structures at Jangwall bridge in urban stream.

  • PDF

Effect and Control of the Sediment in the Combined Sewer on CSOs (합류식 하수관거내 퇴적물이 CSOs에 미치는 영향 및 제어방안)

  • Lim, Bongsu;Kim, Doyoung;Lee, Kuangchun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • This study is selected two points of combined sewer that occurred Fish Kill after first flush, that analyzed generation of pollutants and stream runoff generation of combined sewer overflows (CSOs) as fine weather and rainfall. In addition, this study was to analyze the relationship between CSOs and sediments, to propose measures to reduce the sediment relevant with CSOs and rainfall runoff from entering sewage treatment plants and measures for discharged directly into streams when indicate relatively good water quality after overflow. Sediments in combined sewer system was discharged about 50~80% as overflows during rainfall and we can reduce the amount of the CSOs at least 50% or more if the sewer does not exist in the sediments because of the amount of discharge about the amount of intercept has been investigated by 3~5 times. Because of velocity at sediment interval in sewer is very low, sewage velocity of about 3~5 times as much as it can increase the amount of sediment can be reduced if the separation wall is installed. Effective control of BOD overflow load is respectively 77.5%, 75.8% at first point, second point by the separation wall is installed. Drainage area greater than area in this study or many combined sewer overflows region is increased the more effective control of separation wall. Turbidity to measure changes in water quality of overflows can be used as an factor to control the intercept flows because the intercept flows(3Q) after the first flush has lowered removal efficiency and increases the operational load of sewage treatment plants. Sewage water quality after a overflow when the reasonable turbidity was measured at this point flows to excluded intercept flow(1Q) can be discharged to stream.

VORTEX SHEAR VELOCITY AND ITS EROSION IN THE SCOUR HOLE

  • Lee, Hong-Sik;Kim, Jin-Hong;Lee, Sam-Hee
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.259-266
    • /
    • 2000
  • Scour hole is formed due to the high shear stress of the jet flow at the outlet of a hydraulic structure and vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion occurs in the scour hole. It is important to determine the amount of vortex erosion for the design of bed protection. If the vortex erosion continues and reaches to the hydraulic structure, it causes the deformation of the structure itself. To obtain the amount of the vortex erosion, it is necessary to determine the shear velocity of the line vortex in the scour hole was derived by the theory of energy conservation and found to be related to the upstream overflow velocity. The amount of vortex erosion from the scour hole was obtained using entrainment equation for given value of shear velocity. For a design purpose, if the flow velocity at the end of an apron and the properties of bed material are given, the amount of vortex erosion was obtained.

  • PDF

SPH Modeling of Hydraulics and Erosion of HPTRM Levee

  • Li, Lin;Rao, Xin;Amini, Farshad;Tang, Hongwu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Post-Katrina investigations revealed that most earthen levee damage occurred on the levee crest and landward-side slope as a result of either wave overtopping, storm surge overflow, or a combination of both. In this paper, combined wave overtopping and storm surge overflow of a levee embankment strengthened with high performance turf reinforcement mat (HPTRM) system was studied in a purely Lagrangian and meshless approach, two-dimensional smoothed particle hydrodynamics (SPH) model. After the SPH model is calibrated with full-scale overtopping test results, the overtopping discharge, flow thickness, flow velocity, average overtopping velocity, shear stress, and soil erosion rate are calculated. New equations are developed for average overtopping discharge. The shear stresses on landward-side slope are calculated and the characteristics of soil loss are given. Equations are also provided to estimate soil loss rate. The range of the application of these equations is discussed.

Two - Dimensional analysis in Dam Downstream due Spill Condition (방류조건에 따른 댐 하류부의 2차원 수치해석)

  • Lee, Jong-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.911-918
    • /
    • 2013
  • Two - dimensional numerical analysis model(RMA2), is mainly applied to analyze the flood water levels, velocities and change of river bed at the downstream of Dam. The analysis result be able to influence to Gwangchon bridge from Juam dam, freeboard be insufficient 0.7m to left bank 300m section of dam downstream. Bank overflow is appear to all section of Bosung river to PMF spill condition. Inundated district is appear to river confluence to 200year frequency and is expand to bank overflow to PMF spill condition. Velocity in the channel was simulated high velocity to the bridge and narrow reach and appear to riverbed degradation.

Vacuum Die Casting Mold Design of Fuel Cell Bipolar Plate using Die Filling Simulation and Experimental Verification (금형 충전 해석을 이용한 연료전지 분리판 진공 다이캐스팅 금형 설계 방안 및 실험 검증)

  • Jin, Chul-Kyu;Jang, Chang-Hyun;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.65-74
    • /
    • 2012
  • In this paper, we present the results of our studies on optimal die design towards development of a vacuum die casting process to fabricate fuel cell bipolar plate with micro-channel array. Cavity and overflow shape is designed by computational filling analysis of MAGMA soft. Optimal die design consists of seven overflows at the end of cavity and three overflows at each side wall of cavity. The molten metal that passed the gate and reached the side wall flowed into the side overflow, no turbulent flow occurred, and the filling behavior and velocity distribution were uniform. In addition, partially solidified molten metal passing through the channel was perfectly eliminated by overflow without back-flow. When vacuum pressure, injection speed of low and high region was 300 mbar, 0.3 m/s and 2.5 m/s respectively with Silafont 36 die casting alloy, sound sample without casting defects was obtained. The experimental results are nearly consistent with simulation results.

Model Tests for Deriving Failure Parameter during Levee Overflow (제방 월류시 붕괴매개변수 도출을 위한 모형실험)

  • Kim, Jin-Man;Cho, Won-Beom;Choi, Bong-Hyuck;Oh, Eun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.11-21
    • /
    • 2015
  • According to the damage investigation in 2002, the failures of river levee were caused by overflow, erosion, and unstable body conditions due to piping, inappropriate embanking materials, and poor compaction. Especially, overflow was identified as a main reason that induces levee failure by 39.5% from the distribution of failure types. The major parameters, such as levee collapsing angle (${\theta}$), levee collapsing rate (k) affect inundation velocity and area size during the analysis of inundation modeling, however, domestic research effort on this area is still insufficient. In this paper authors conducted levee failure experiments of 4 levee height types, 0.20 m, 0.25 m, 0.30 m, and 0.40 m based on theassumption of Froude Similarity (${\lambda}_{Fr}=1$). As a result, the authors suggested a levee failure mechanism according to the levee heights (H), a collapse extension lengthwhich is around, levee collapse angle (${\theta}$), levee collapse rate (k).

2-D Analysis of the Low Flow Variation Around the Bridge Pier (교각 주변의 저수류 (低水流) 흐름 변화에 대한 2차원 분석)

  • Yeon, In-Sung;Lee, Jai-Kyung;Yeon, Gyu-Bang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.91-97
    • /
    • 2009
  • The flow is changed by the structure which goes across the river. The structure with debris causes high water level and overflow. The changed flow, which caused by pier and stream characteristics like velocity and slope, was analysed by 2D model. After rainfall, the influences of increased discharge were evaluated. Velocity was simulated in the channel by SMS (Surface water Modeling System) using RMA2, and high velocity values were found in the steep and narrow reach. Highest velocity value around piers was showed in the middle of space between two piers. The increased discharge due to rainfall increases velocity and changes flow contour considerably.