• Title/Summary/Keyword: overflow head

Search Result 13, Processing Time 0.031 seconds

Analysis of Overflow Characteristics around a Circular-Crested Weir by Using Numerical Model (수치모의를 이용한 원형위어의 월류흐름 특성 해석)

  • Kim, Dae-Geun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.147-154
    • /
    • 2016
  • The present study used the hydrodynamic numerical model, with the Reynolds-averaged Navier-Stokes equations (RANS) as its governing equations, to analyze overflow characteristics such as the discharge coefficient of circular-crested weir and the flow velocity and pressure distribution of weir crest. The simulation results well reproduced the overflow characteristics of the overfall of circular-crested weir both qualitatively and quantitatively. As for the discharge coefficient, rational results were yielded by the discharge coefficient equation proposed by Hager(1985) in the $H_1/R_b<0.58$ and by the discharge coefficient equation proposed by Samani and Bagheri(2014) in the $H_1/R_b>0.58$, respectively. Because most existing discharge coefficient equations were developed by disregarding the effects of the approach velocity, when they are applied, it is necessary to evaluate the effects of the approach velocity on the overflow head beforehand.

A Study for Flow-rate Balancing when the System Resistance Changes in the Control of the Radiant Floor Heating System (온돌난방제어 시 시스템저항 변화에 따른 유량 밸런싱에 관한 연구)

  • Choi, Jeong-Min;Lee, Kyu-Nam;Ryu, Seong-Ryong;Kim, Kwang-Woo;Yeo, Myoung-Souk
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.129-134
    • /
    • 2005
  • The behavior of whole system is affected by a minor change of system in the hydronic radiant floor heating system. Under partial load condition, the change of system resistance causes overflow of supply water. This unexpected effect is the cause of several problems in the heating system. In this study, we find some factors were validated with several computer simulations. After validation of this result, several conceptual solutions are evaluated to prevent overflow.

  • PDF

A Numerical Simulations on the Flow over Ogee Spillway with Pier (교각이 설치된 월류형 여수로에서의 흐름에 대한 수치모의)

  • Kim, Dae-Geun;Lee, Jae-Hyung;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.363-373
    • /
    • 2004
  • This study analyzed the hydrodynamic flow behavior on a standard ogee spillway with pier by using FLOW-3D. The simulation results were compared with the experiment data of U.S. Army Corps of Engineers - Waterways Experiment Station (WES) and also compared with 2-dimensional simulation results on a spillway without pier. In particular, the characteristics of the distribution of the overflow nappe and pressure in a spillway with pier were investigated in detail. As for the results of the simulation on the flow rate, overflow nappe, and pressure, although there were a few differences in the experiment results of WES, they were identical in most cases in terms of trend. Summarizing the major flow behavior in a standard ogee spillway with pier, first, the water stage at the center line of the bay was higher than that at the side of the bay along the pier. Second, when the water head was larger than the design head of the spillway, at the upstream area of the weir crest, the absolute magnitude of negative pressure occurred highest at the side of the bay along the pier. On the other hand, at the downstream area of the weir crest, the absolute magnitude of negative pressure occurred highest at the centerline of the bay.

A Study on Darrieus-type Hydroturbine toward Utilization of Extra-Low Head Natural Flow Streams

  • Tanaka, Kei;Hirowatari, Kotaro;Shimokawa, Kai;Watanabe, Satoshi;Matsushita, Daisuke;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.152-159
    • /
    • 2013
  • A two-dimensional Darrieus-type hydroturbine system, installed with a wear for flow streams such as small rivers and waterways, has been developed for hydropower utilization of extra-low head less than 2m. There are several problems such as flow rate change and flowing wastes to be solved for its practical use in natural flow streams. In the present study, at first, a design guideline in the case of overflow or bypass flow is shown by using simple flow model. Next, in order to avoid the unexpected obstacles flowing into the hydroturbine, an installation of waste screening system is examined. It is confirmed that the screen is effective with some amount of bypass flow rate, however the output power is remarkably deteriorated.

A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works (취입모의 경제적 계획취입수심 산정방법에 대한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

Inundation Analysis in Urban Area Considering of Head Loss Coefficients at Surcharged Manholes (과부하 맨홀의 손실계수를 고려한 도시지역 침수해석)

  • Lee, Won;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • In general, XP-SWMM regards manholes as nodes, so it can not consider local head loss in surcharged manhole depending on shape and size of the manhole. That might be a reason why XP-SWMM underestimates inundated-area compared with reality. Therefore, it is necessary to study how we put the local head loss in surcharged manhole in order to simulate storm drain system with XP-SWMM. In this study, average head loss coefficients at circular and square manhole were estimated as 0.61 and 0.68 respectively through hydraulic experiments with various discharges. The estimated average head loss coefficients were put into XP-SWMM as inflow and outflow energy loss of nodes to simulate inundation area of Gunja basin. Simulated results show that not only overflow discharge amount but inundated-area increased considering the head loss coefficients. Also, inundation area with considering head loss coefficients was matched as much as 58% on real inundation area. That was more than simulated results without considering head loss coefficients as much as 18 %. Considering energy loss in surcharged manholes increases an accuracy of simulation. Therefore, the averaged head loss coefficients of this study could be used to simulate storm drain system. It was expected that the study results will be utilized as basic data for establishing the identification of the inundation risk area.

Experimental Study on Wave Overtopping Rate of Wave Overtopping Control Structure for Wave Energy Conversion (파랑 에너지 변환을 위한 월파제어구조물의 월파량 산정 실험)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.8-15
    • /
    • 2005
  • Wave energy has been considered to be one of the most promising energy resources for the future, as it is pollution-free and an abundant natural resource. However, since it has drawbacks of non-stationary energy density, it is necessary to change the wave energy into a simple concentrated energy. Progressive waves in a coastal area can be amplified, swashed, and overtopped by a wave overtopping control structure. By conserving the quantity of overflow in a reservoir, the kinetic energy of the waves can be converted to the potential energy with a hydraulic head above the mean sea level. The potential energy in the form of a hydraulic head can be utilized to produce electric power, similar to hydro-electric power generation. This study aims to find the most optimal shape of wave overtopping structure for maximum overtopping volume of sea water; for this purpose, we carried out the wave overtopping experiment in a wave tank, under both regular and irregular wave conditions.

A Study on Drainage System of Non-motorized For Overtopping and Radon Reduction (무동력 배수시스템을 활용한 도상월류 및 라돈저감방안 연구)

  • Ko, Soung-Gee;Kuk, Yun-Mo;Kim, Man-Hwa;Park, Jong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.208-213
    • /
    • 2011
  • Seoul Metropolitan Rapid Transit Corporation has 148's stations. Total length is 152km and most of the station is located in the basement and Groundwater occur inflow of 700,000 tons per day. Groundwater is treated as a natural flow way instead of artificial ways. Therefore, most of the collection wells is located in the low place or station for the efficient induction and collecting water. Manhole overtopping is occurring frequently because groundwater is concentrated in the drain pipe near the collecting well and heavy rainfall in summer. As a result, ballast contamination and radon levels are increased in tunnel. This paper introduces a solution is increasing overflow in tunnel, which introduces drainage system of non-motorized that uses differencial head between collecting well and manhole.

  • PDF

A study on simultaneous injection molding and two-color coating for car gas cap cover (자동차 주유구 커버에 대한 사출성형과 2색 코팅 동시 구현에 관한 연구)

  • Bae, Hyung-Sup;Park, Dong-Hyun;Kim, Boo-Kon;Seo, Chang-Ho;Heo, Won-Geun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2021
  • Mold design for in-mold coating was carried out to achieve simultaneous injection molding and two-color coating for car gas cap cover. The developed mold includes one core and three cavities which are composed of a substrate cavity and two coating cavities. To provide a sealing edge for complete seal during the second coating, the first coated material was used at the boundary between the first coating and the second one, and injection molded substrate was used at the parting line. The materials used were PC/ABS for substrate and 2-component Polyurea for coating. Through experiments, it was found that the suggested sealing edges were effective for complete seal during the second coating. In cavity pressure traces, there were three peaks caused by mold closing, coating-material injection and cleaning-piston advancement inside the mixing head. The cavity pressure increased with decreasing coating thickness.

Analysis of Flow Characteristics of the Improved-Pneumatic-Movable Weir through the Laboratory Experiments (실내실험을 통한 개량형 공압식 가동보의 월류흐름 특성 분석)

  • Lee, Kyung Su;Jang, Chang-Lae;Lee, Namjoo;Ahn, Sang Jin
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1007-1015
    • /
    • 2014
  • This study investigates the discharge coefficient of Improved-Pneumatic-Movable (IPM) weir through the weir, a kind of movable weirs, to estimate much more accurate rating curves using laboratory flume experiments. The discharge coefficient ($C_d$) is from 0.613 to 0.634 by the stand-up angle of the weir. The upstream Froude Number ($F_{r1}$), relative crest length(${\xi}$), Headwater Ratio ($H_1/W$), the Overflow depth ratio of weir crest ($y_c/y_1$) was changed by the upstream. And the downstream Froude number ($F_{r2}$), the Overflow depth ratio of weir crest and Downstream Water depth ($y_c/y_2$) was changed by the downstream. The ratio of Downstream and Up and Downstream water Depth (${\Delta}y/y_2$) was found to be changed by both of the up and downstream flow. They considered the major influence variables and derived the Discharge coefficient Formula at this study. The Discharge coefficient of the Improved-Pneumatic-Movable (IPM) weir was settled by the height of the Movable weir, that is to say, it was settled by the flow conditions of upstream approach flow head and physical data according to the standing angle.