• 제목/요약/키워드: overexpression

검색결과 1,598건 처리시간 0.03초

PB-Overexpression of OsZn15, a CCCH-tandem zinc finger protein, increases drought tolerance in rice

  • Seong, So Yoon;Jung, Harin;Choi, Yang Do;Kim, Ju-Kon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.115-115
    • /
    • 2017
  • Zinc finger proteins constitute a large family which has been studied to have various functions in different organisms. Tandem CCCH zinc finger proteins (TZFs), members of the zinc finger protein family, are known to participate as post-transcriptional regulators of gene expression in eukaryotes. Here, we showed that the OsZn15, a gene for tandem CCCH zinc finger protein, is induced by abiotic stress and its overexpression in transgenic rice plants (PGD1:OsZn15) gains higher drought tolerance. Gene expression analysis of promoter:GFP plants revealed that OsZn15 is specifically expressed in anther and embryo, but not in vegetative organs. In-field evaluation, grain yield was higher in the PGD1:OsZn15 than nontransgenic plants under drought conditions. Interestingly, OsZn15 is shown to not only localize at nucleus but also co-localize with both processing bodies (PB) and stress granules (SG), two messenger ribo-nucleoprotein complexes which are known to activate by forming cytoplasmic foci under stress conditions. In sum, these results suggest that OsZn15 increases drought stress tolerance of rice probably by participating in RNA turnover in PB and SG.

  • PDF

Overexpression of Cuphea viscosissima CvFatB4 enhances 16:0 fatty acid accumulation in Arabidopsis

  • Yeon, Jinouk;Park, Jong-Sug;Lee, Sang Ho;Lee, Kyeong-Ryeol;Yi, Hankuil
    • Journal of Plant Biotechnology
    • /
    • 제46권4호
    • /
    • pp.282-290
    • /
    • 2019
  • Cuphea viscosissima plants accumulate medium-chain fatty acids (MCFAs), i.e., those containing 8 ~ 14 carbons, in their seeds, in addition to the longer carbon chain fatty acids (≥16 carbons) found in a variety of plant species. Previous studies have reported the existence of three C. viscosissima MCFA-producing acyl-acyl carrier protein (ACP) thioesterases with different substrate specificities. In this study, CvFatB4, a novel cDNA clone encoding an acyl-ACP thioesterase (EC 3.1.2.14), was isolated from developing C. viscosissima seeds. Sequence alignment of the deduced amino acid sequence revealed that four catalytic residues for thioesterase activity are conserved and a putative N-terminal chloroplast transit peptide is present. Overexpression of CvFatB4 cDNA, which was under the control of the cauliflower mosaic virus 35S promoter, in Arabidopsis thaliana led to an increase in 16:0 fatty acid (palmitate) levels in the seed oil at the expense of 18:1 and other non-MCFAs.

Effect of Baechu Kimchi Added Ecklonia cava Extracts on High Glucose-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

  • Lee, Hyun-Ah;Song, Yeong-Ok;Jang, Mi-Soon;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제19권3호
    • /
    • pp.170-177
    • /
    • 2014
  • Endothelial cell dysfunction is considered to be a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of a baechu kimchi added Ecklonia cava extract (BKE) against high glucose induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced cytotoxicity, whereas treatment with BKE protected HUVECs from high glucose induced damage; by restoring cell viability. In addition, BKE reduced lipid peroxidation, intracellular reactive oxygen species and nitric oxide levels in a dose dependent manner. Treatment with high glucose concentrations also induced the overexpression of inducible nitric oxide synthase, cyclooxygenase-2 and NF-${\kappa}B$ proteins in HUVECs, but BKE treatment significantly reduced the overexpression of these proteins. These findings indicate that BKE may be a valuable treatment against high glucose-induced oxidative stress HUVECs.

Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

  • Zhou, Caihong;Shen, Qi;Xue, Jinglun;Ji, Chaoneng;Chen, Jinzhong
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.113-118
    • /
    • 2013
  • TTRAP is a multi-functional protein that is involved in multiple aspects of cellular functions including cell proliferation, apoptosis and the repair of DNA damage. Here, we demonstrated that the lentivirus-mediated overexpression of TTRAP significantly inhibited cell growth and induced apoptosis in osteosarcoma cells. The ectopic TTRAP suppressed the growth and colony formation capacity of two osteosarcoma cell lines, U2OS and Saos-2. Cell apoptosis was induced in U2OS cells and the cell cycle was arrested at G2/M phase in Saos-2 cells. Exogenous expression of TTRAP in serum-starved U2OS and Saos-2 cells induced an increase in caspase-3/-7 activity and a decrease in cyclin B1 expression. In comparison with wild-type TTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesterase activity of TTRAP, in particular $TTRAP^{E152A}$, showed decreased inhibitory activity on cell growth. These results may aid in clarifying the physiological functions of TTRAP, especially its roles in the regulation of cell growth and tumorigenesis.

Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells

  • Maeng, Hyo Jin;Song, Jae-Hwi;Kim, Goon-Tae;Song, Yoo-Jeong;Lee, Kangpa;Kim, Jae-Young;Park, Tae-Sik
    • BMB Reports
    • /
    • 제50권3호
    • /
    • pp.144-149
    • /
    • 2017
  • Ceramides are the major sphingolipid metabolites involved in cell survival and apoptosis. When HepG2 hepatoma cells were treated with celecoxib, the expression of the genes in de novo sphingolipid biosynthesis and sphingomyelinase pathway was upregulated and cellular ceramide was elevated. In addition, celecoxib induced endoplasmic reticulum (ER) stress in a time-dependent manner. SPTLC2, a subunit of serine palmitoyltransferase, was overexpressed by adenovirus. Adenoviral overexpression of SPTLC2 (AdSPTLC2) decreased cell viability of HEK293 and HepG2 cells. In addition, AdSPTLC2 induced apoptosis via the caspase-dependent apoptotic pathway and elevated cellular ceramide, sphingoid bases, and dihydroceramide. However, overexpression of SPTLC2 did not induce ER stress. Collectively, celecoxib activates de novo sphingolipid biosynthesis and the combined effects of elevated ceramide and transcriptional activation of ER stress induce apoptosis. However, activation of de novo sphingolipid biosynthesis does not activate ER stress in hepatoma cells and is distinct from the celecoxib-mediated activation of ER stress.

Involvement of Cathepsin D in Apoptosis of Mammary Epithelial Cells

  • Seol, M.B.;Bong, J.J.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권8호
    • /
    • pp.1100-1105
    • /
    • 2006
  • During involution of the mammary gland after the lactation period, the gland undergoes an extensive epithelial cell death. In our previous study, overexpression of an extracellular proteinase inhibitor (Expi) gene accelerated apoptosis of mammary epithelial cells. Here we found that expression of the cathepsin D gene was induced in the Expi-overexpressed apoptotic cells. To understand the role of cathepsin D in apoptosis, we transfected cathepsin D gene into mammary epithelial HC11 cells and established the stable cell lines overexpressing the cathepsin D gene. We found that overexpression of the cathepsin D gene partially induced apoptosis of mammary epithelial cells. Expression patterns of the cathepsin D gene were examined in mouse mammary gland at various reproductive stages. Expression of the cathepsin D gene was increased during involution stages compared to lactation stages, and highest expression levels were shown at involution on day 4. We also examined expression of the cathepsin D gene in various mouse tissues. Mammary gland at involution on day 2 showed highest levels of cathepsin D mRNA of the mouse tissues that we examined. Liver tissues showed high levels of cathepsin D expression. These results demonstrate that cathepsin D may contribute to the apoptotic process of mammary epithelial cells.

Long Non-coding RNA GAS5 Functions as a Tumor Suppressor in Renal Cell Carcinoma

  • Qiao, Hui-Ping;Gao, Wei-Shi;Huo, Jian-Xin;Yang, Zhan-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.1077-1082
    • /
    • 2013
  • Background: Renal cell carcinoma (RCC) is a malignancy with a poor prognosis. We aimed to explore whether the expression of Long Non-Coding RNA (LncRNA) growth arrest-specific transcript 5 (GAS5) is associated with RCC genesis. Methods: We selected twelve clinical samples diagnosed for renal clear cell carcinoma and found that the LncRNA GAS5 transcript levels were significantly reduced relative to those in adjacent unaffected normal renal tissues. Results: In addition, expression of GAS5 was lower in the RCC cell line A498 than that in normal renal cell line HK-2. Furthermore, using functional expression cloning, we found that overexpression of GAS5 in A498 cells inhibited cell proliferation, induced cell apoptosis and arrested cell cycling. At the same time, the migration and invasion potential of A498 cells were inhibited compared to control groups. Conclusion: Our study provided the first evidence that a decrease in GAS5 expression is associated with RCC genesis and progression and overexpression of GAS5 can act as a tumor suppressor for RCC, providing a potential attractive therapeutic approach for this malignancy.

Tunicamycin negatively regulates BMP2-induced osteoblast differentiation through CREBH expression in MC3T3E1 cells

  • Jang, Won-Gu;Kim, Eun-Jung;Koh, Jeong-Tae
    • BMB Reports
    • /
    • 제44권11호
    • /
    • pp.735-740
    • /
    • 2011
  • Tunicamycin, an endoplasmic reticulum (ER) stress inducer, specifically inhibits N-glycosylation. The cyclic AMP (cAMP) response element-binding protein H (CREBH) was previously shown to be regulated by UPR-dependent proteolytic cleavage in the liver. On the other hand, the role of CREBH in other tissues is unknown. In the present study, tunicamycin increased the level of CREBH activation (cleavage) as well as mRNA expression in osteoblast cells. Adenoviral (Ad) overexpression of CREBH suppressed BMP2-induced expression of alkaline phosphatase (ALP) and osteocalcin (OC). Interestingly, the BMP2-induced OASIS (structurally similar to CREBH, a positive regulator of osteoblast differentiation) expression was also inhibited by CREBH overexpression. In addition, inhibition of CREBH expression using siRNA reversed the tunicamycin-suppressed ALP and OC expression. These results suggest that CREBH inhibited osteoblast differentiation via suppressing BMP2-induced ALP, OC and OASIS expression in mouse calvarial derived osteoblasts.

Novel p104 protein regulates cell proliferation through PI3K inhibition and p27Kip1 expression

  • Han, Seung-Jin;Lee, Jung-Hyun;Choi, Ki-Young;Hong, Seung-Hwan
    • BMB Reports
    • /
    • 제43권3호
    • /
    • pp.199-204
    • /
    • 2010
  • The protein p104 was first isolated as a binding partner of the Src homology domain of phospholipase C$\gamma$1, and has been shown to associate with p85$\alpha$, Grb2. The ectopic expression of p104 reduced cellular growth rate, which was also achieved with the overexpression of only the proline-rich region of p104. The proline-rich region of p104 has been found to inhibit the colony formation of platelet-derived growth factor BB-stimulated NIH3T3 cells and MCF7 cancer cells on soft agar. Mutagenesis analysis showed that the second and third proline-rich regions are essential for growth control, as well as for interaction with p85$\alpha$. Overexpression of p104 increased the level of the cyclin-dependent kinase inhibitor, $p27^{Kip1}$, and inhibited the activity of phosphoinositide 3-kinase (PI3K). In summary, p104 interacts with p85$\alpha$ and is involved in the regulation of $p27^{Kip1}$ expression for the reduction of cellular proliferation.

Overexpression of Arylsulfatase in E. coli and Its Application to Desulfatation of Agar

  • Lim, Jae-Myung;Jang, Yeon-Hwa;Kim, Hyeung-Rak;Kim, Young-Tae;Choi, Tae-Jin;Kim, Joong-Kyun;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.777-782
    • /
    • 2004
  • The arylsulfatase gene (astA, 984 bp ORF) from the P. carrageenovora genome was amplified by PCR and subcloned into the pET21a vector. When the constructed plasmid pAST-A1 (6.4 kb) was introduced into E. coli BL21(DE3), the transformant on the LB plate containing IPTG showed a hydrolyzing activity for 4-methylumbelliferyl sulfate and p-nitrophenyl sulfate. The highest arylsulfatase activity (2.1 unit/ml) was obtained at 10 mM IPTG. Most arylsulfatase activity was found in the cell lysate, whereas no significant activity was detected in the culture supernatant. The molecular weight of the recombinant enzyme was estimated to be 33.1 kDa by SDS-PAGE. After the reaction of agar with arylsulfatase for 12 h at $40^{\circ}C$, the gel strength of the agar increased by 2-fold, and 73% of the sulfate in the agar had been removed. This result suggests that arylsulfatase expressed in E. coli could be useful in the production of electrophoretic grade agarose.