• 제목/요약/키워드: overexpressed

검색결과 685건 처리시간 0.028초

Diagnostic Relevance of Overexpressed Serine Threonine Tyrosine Kinase/Novel Oncogene with Kinase Domain (STYK1/NOK) mRNA in Colorectal Cancer

  • Orang, Ayla Valinezhad;Safaralizadeh, Reza;Hosseinpour Feizi, Mohammad Ali;Somi, Mohammad Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6685-6689
    • /
    • 2014
  • Background: Alterations in gene expression levels or mutations of tyrosine kinases are detected in some human cancers. In this study, we examined whether serine threonine tyrosine kinase 1 (STYK1)/novel oncogene with kinase domain (NOK) is overexpressed in patients with colorectal cancer. We also examined the clinical relevance of STYK1/NOK expression in cancer tissues. Materials and Methods: In tumor samples of patients with colorectal cancer and their matched non-cancerous samples, STYK1/NOK messenger RNA (mRNA) expression was analyzed by quantitative reverse transcriptase polymerase chain reaction. Associations between the expression levels of STYK1/NOK and clinicopathological characteristics of colorectal cancer were also assessed using Mann-Whitney U and Kruskal-Wallis tests. Results: Upregulation of STYK1/NOK was found in cancer tissues even at early stage of colorectal cancer compared to normal adjacent tissues. The optimal cutoff point of 0.198 the STYK1/NOK expression showed 0.78 sensitivity and 0.75 specificity for diagnosis. Overexpressed STYK1/NOK was correlated with tumor size but had no association with other clinicopathological characteristics of colorectal cancer. Conclusions: These results indicate that STYK1/NOK mRNA is widely expressed in the patients with colorectal cancer and suggest that inhibition of this molecule could potentially serve as a novel therapeutic target.

INVOLVEMENT OF p27CIP/KIP IN HSP25 OR INDUCIBLE HSP70 MEDIATED ADAPTIVE RESPONSE BY LOW DOSE RADIATION

  • Seo, Hang-Rhan;Chung, Hee-Yong;Lee, Yoon-Jin;Baek, Min;Bae, Sang-Woo;Lee, Su-Jae;Lee, Yun-Sil
    • Nuclear Engineering and Technology
    • /
    • 제38권3호
    • /
    • pp.285-292
    • /
    • 2006
  • Thermoresistant (TR) clones of radiation-induced fibrosarcoma (RIF) cells have been reported to show an adaptive response to 1cGy of low dose radiation, and HSP25 and inducible HSP70 are involved in this process. In this study, to further elucidate the mechanism by which HSP25 and inducible HSP70 regulate the adaptive response, HSP25 or inducible HSP70 overexpressed RIF cells were irradiated with 1cGy and the cell cycle was analyzed. HSP25 or inducible HSP70 overexpressed cells together with TR cells showed increased G1 phase after 1cGy irradiation, while RIF cells did not. $[^3H]-Thymidine$ and BrdU incorporation also indicated that both HSP25 and inducible HSP70 are involved in G1 arrest after 1cGy irradiation. Molecular analysis revealed upregulation of p27Cip/Kip protein in HSP25 and inducible HSP70 overexpressed cells, and cotransfection of p27Cip/Kip antisense abolished the induction of the adaptive response and 1cGy-mediated G1 arrest. The above results indicate that induction of an adaptive response by HSP25 and inducible HSP70 is mediated by upregulation of p27Cip/Kip protein, resulting in low dose radiation-induced G1 arrest.

FoxM1 as a Novel Therapeutic Target for Cancer Drug Therapy

  • Xu, Xin-Sen;Miao, Run-Chen;Wan, Yong;Zhang, Ling-Qiang;Qu, Kai;Liu, Chang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.23-29
    • /
    • 2015
  • Background: Current cancer therapy mainly focuses on identifying novel targets crucial for tumorigenesis. The FoxM1 is of preference as an anticancer target, due to its significance in execution of mitosis, cell cycle progression, as well as other signal pathways leading to tumorigenesis. FoxM1 is partially regulated by oncoproteins or tumor suppressors, which are often mutated, lost, or overexpressed in human cancer. Since sustaining proliferating signaling is an important hallmark of cancer, FoxM1 is overexpressed in a series of human malignancies. Alarge-scale gene expression analysis also identified FoxM1 as a differentially-expressed gene in most solid tumors. Furthermore, overexpressed FoxM1 is correlated with the prognosis of cancer patients, as verified in a series of malignancies by Cox regression analysis. Thus, extensive studies have been conducted to explore the roles of FoxM1 in tumorigenesis, making it an attractive target for anticancer therapy. Several antitumor drugs have been reported to target or inhibit FoxM1 expression in different cancers, and down-regulation of FoxM1 also abrogates drug resistance in some cancer cell lines, highlighting a promising future for FoxM1 application in the clinic.

Comparative Transcriptome Analysis of Queen, Worker, and Larva of Asian Honeybee, Apis cerana

  • Kim, Woo Jin;Lee, Seok Hee;An, Saes Byeol;Kim, Song Eun;Liu, Qin;Choi, Jae Young;Je, Yeon Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제27권2호
    • /
    • pp.271-276
    • /
    • 2013
  • The Asian honeybee, Apis cerana, is a native honeybee species in Korea which is important in agriculture for pollination and honey production. For better understanding of the physiology of A. cerana, high-throughput Illumina transcriptome sequencing was performed to analyze the gene expression profiles of queen, worker, and larva. A total of 219,799,682 clean reads corresponding to 22.2 Gb of nucleotide sequences was obtained from the whole body total RNA samples. The Apis mellifera reference mRNA sequence database was used to measure the gene expression level with Bowtie2 and eXpress software, and the Illumina short reads were then mapped to 11,459 out of 11,736 A. mellifera reference genes. Total of 9,221 genes with FPKM value greater than 5 of each sample group were subjected to eggNOG with BLASTX for gene ontology analysis. The differential gene expression between queen and worker, and worker and larva were analyzed to screen the overexpressed genes in each sample group. In the queen and worker sample group, total of 1,766 genes were differentially expressed with 887 and 879 genes overexpressed over two folds in queen and worker, respectively. In the worker and larva sample group, total of 1,410 genes were differentially expressed with 1,009 and 401 genes overexpressed over two folds in worker and larva, respectively.

Overexpression of Long Non-Coding RNA MIR22HG Represses Proliferation and Enhances Apoptosis via miR-629-5p/TET3 Axis in Osteosarcoma Cells

  • Zhao, Haoliang;Zhang, Ming;Yang, Xuejing;Song, Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1331-1342
    • /
    • 2021
  • In this study, we evaluated the mechanism of long non-coding RNA MIR22 host gene (LncRNA MIR22HG) in osteosarcoma cells. Forty-eight paired osteosarcoma and adjacent tissues samples were collected and the bioinformatic analyses were performed. Target genes and potential binding sites of MIR22HG, microRNA (miR)-629-5p and tet methylcytosine dioxygenase 3 (TET3) were predicted by Starbase and TargetScan V7.2 and confirmed by dual-luciferase reporter assay. Cell Counting Kit-8, colony formation and flow cytometry assays were utilized to determine the viability, proliferation and apoptosis of transfected osteosarcoma cells. Pearson's analysis was introduced for the correlation analysis between MIR22HG and miR-629-5p in osteosarcoma tissue. Relative expressions of MIR22HG, miR-629-5p and TET3 were measured by quantitative real-time polymerase chain reaction or Western blot. MiR-629-5p could competitively bind with and was negatively correlated with MIR22HG, the latter of which was evidenced by the high expression of miR-629-5p and low expression of MIR22HG in osteosarcoma tissues. Overexpressed MIR22HG repressed the viability and proliferation but enhanced apoptosis of osteosarcoma cells, which was reversed by miR-629-5p upregulation. TET3 was the target gene of miR-629-5p, and the promotive effects of upregulated miR-629-5p on the viability and proliferation as well as its repressive effect on apoptosis were abrogated via overexpressed TET3. To sum up, overexpressed MIR22HG inhibits the viability and proliferation of osteosarcoma cells, which was achieved via regulation of the miR-629-5p/TET3 axis.

Downregulation of FoxM1 sensitizes nasopharyngeal carcinoma cells to cisplatin via inhibition of MRN-ATM-mediated DNA repair

  • Li, Dandan;Ye, Lin;Lei, Yue;Wan, Jie;Chen, Hongyan
    • BMB Reports
    • /
    • 제52권3호
    • /
    • pp.208-213
    • /
    • 2019
  • Chemoresistance is the primary obstacle in the treatment of locally advanced and metastatic nasopharyngeal carcinoma (NPC). Recent evidence suggests that the transcription factor forkhead box M1 (FoxM1) is involved in chemoresistance. Our group previously confirmed that FoxM1 is overexpressed in NPC. In this study, we investigated the role of FoxM1 in cisplatin resistance of the cell lines 5-8F and HONE-1 and explored its possible mechanism. Our results showed that FoxM1 and NBS1 were both overexpressed in NPC tissues based on data from the GSE cohort (GSE12452). Then, we measured FoxM1 levels in NPC cells and found FoxM1 was overexpressed in NPC cell lines and could be stimulated by cisplatin. MTT and clonogenic assays, flow cytometry, ${\gamma}H2AX$ immunofluorescence, qRT-PCR, and western blotting revealed that downregulation of FoxM1 sensitized NPC cells to cisplatin and reduced the repair of cisplatin-induced DNA double-strand breaks via inhibition of the MRN (MRE11-RAD50-NBS1)-ATM axis, which might be related to the ability of FoxM1 to regulate NBS1. Subsequently, we demonstrated that enhanced sensitivity of FoxM1 knockdown cells could be reduced by overexpression of NBS1. Taken together, our data demonstrate that downregulation of FoxM1 could improve the sensitivity of NPC cells to cisplatin through inhibition of MRN-ATM-mediated DNA repair, which could be related to FoxM1-dependent regulation of NBS1.

MST1R as a potential new target antigen of chimeric antigen receptor T cells to treat solid tumors

  • Wen An;Ju-Seop Kang;Sukjoong Oh;Ang Tu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권3호
    • /
    • pp.241-256
    • /
    • 2023
  • Although chimeric antigen receptor T cell (CAR-T) is a promising immunotherapy in hematological malignancies, there remain many obstacles to CART cell therapy for solid tumors. Identifying appropriate tumor-associated antigens (TAAs) is especially critical for success. Using a bioinformatics approach, we identified common potential TAAs for CAR-T cell immunotherapy in solid tumors. We used the GEO database as a training dataset to find differentially expressed genes (DEGs) and verified candidates using the TCGA database, obtaining seven common DEGs (HM13, SDC1, MST1R, HMMR, MIF, CD24, and PDIA4). Then, we used MERAV to analyze the expression of six genes in normal tissues to determine the ideal target genes. Finally, we analyzed tumor microenvironment factors. The results of major microenvironment factor analyses showed that MDSCs, CXCL1, CXCL12, CXCL5, CCL2, CCL5, TGF- β, CTLA-4, and IFN-γ were significantly overexpressed in breast cancer. The expression of MST1R was positively correlated with TGF- β, CTLA-4, and IFN-γ. In lung adenocarcinoma, MDSCs, Tregs, CXCL12, CXCL5, CCL2, PD-L1, CTLA-4, and IFN-γ were significantly overexpressed in tumor tissues. The expression of MST1R was positively correlated with TGF- β, CTLA-4, and IFN-γ. In bladder cancer, CXCL12, CCL2, and CXCL5 were significantly overexpressed in tumor tissues. MST1R expression was positively correlated with TGF- β. Our results demonstrate that MST1R has the potential as a new target antigen for treating breast cancer, lung adenocarcinoma, and bladder cancer and may be used as a progression indicator for bladder cancer.

The Role of Heat Shock Protein 25 in Radiation Resistance

  • Lee Yoon-Jin;Lee Su-Jae;Bae Sangwoo;Lee Yun-Sil
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권2호
    • /
    • pp.51-59
    • /
    • 2005
  • Overexpression of HSP25 delayed cell growth, increased the level of $p21^{waf}$, reduced the levels of cyclin D1, cylcin A and cdc2, and induced radioresistance in L929 cells. We demonstrated that extracellular regulated kinase (ERK) and MAP kinase/ERK kinase (MEK) expressions as well as their activation (phospho-forms) were inhibited by hsp25 overexpression. To confirm the relationship between ERK1/2 and hsp25-mediated radioresistance, ERK1 or ERK2 cDNA was transiently transfected into the hsp25 overexpressed cells and their radioresistance was examined. HSP25-mediated radioresistance was abolished by overexpression of ERK2, but not by overexpression of ERK1. Alteration of cell cycle distribution and cell cycle related protein expressions (cyclin D, cyclin A and cdc2) by hsp25 overexpression were also recovered by ERK2 cDNA transfection. Increase in Bc1-2 protein by hsp25 gene transfection was also reduced by subsequent ERK2 cDNA-transfection. In addition, HSP25 overexpression reduced reactive oxygen species (ROS) and increased expression of manganese superoxide dismutase (MnSOD) gene. Increased activation of NF-kB (IkB degradation) was also found in hsp25-overexpressed cells. Moreover, transfection of hsp25 antisense gene abrogated all the HSP25-mediated phenomena. To further elucidate the exact relationship between MnSOD induction and NF-kB activation, dominant negative $I-kB\alpha(I-kB\alpha-DN)$ construction was transfected to HSP25 overexpressed cells. $I-kB\alpha-DN$ inhibited HSP25 mediated MnSOD gene expression. In addition, HSP25 mediated radioresistance was blocked by $I-kB\alpha-DN$ transfection. Blockage of MnSOD with antisense oligonucleotides in HSP25 overexpressed cells, prevented apoptosis and returned the ERK1/2 activation to the control level. From the above results, we suggest for the first time that reduced oxidative damage by HSP25 was due to MnSOD-mediated down regulation of ERK1/2.

  • PDF