• Title/Summary/Keyword: overconsolidated soils

Search Result 25, Processing Time 0.019 seconds

Bifurcation analysis of over-consolidated clays in different stress paths and drainage conditions

  • Sun, De'an;Chen, Liwen;Zhang, Junran;Zhou, Annan
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.669-685
    • /
    • 2015
  • A three-dimensional elastoplastic constitutive model, also known as a UH model (Yao et al. 2009), was developed to describe the stress-strain relationship for normally consolidated and over-consolidated soils. In this paper, an acoustic tensor and discriminator of bifurcation for the UH model are derived for the strain localization of saturated clays under undrained and fully and partially drained conditions. Analytical analysis is performed to illustrate the points of bifurcation for the UH model with different three-dimensional stress paths. Numerical analyses of cubic specimens for the bifurcation of saturated clays under undrained and fully and partially drained conditions are conducted using ABAQUS with the UH model. Analytical and numerical analyses show the similar bifurcation behaviour of overconsolidated clays in three-dimensional stress states and various drainage conditions. The results of analytical and numerical analyses show that (1) the occurrence of bifurcation is dependent on the stress path and drainage condition; and (2) bifurcation can appear in either a strain-hardening or strain-softening regime.

Validation of a Rate-Sensitive Model for Clayey Soils (점성토에서 전단속도 의존 모델의 검증)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.596-601
    • /
    • 2009
  • In this study, the rate-sensitive constitutive model, which was developed in the previous paper of this journal, was validated using the experimental results obtained from the well-calibrated triaxial compression test conducted with the Boston blue clay. The validation was performed for the various cases of the strain rate of 0.05%/hr, 0.5%/hr, 5.0%/hr and OCR of 1, 2, 4, 8. The developed model was validated for the normally and slightly overconsolidated cases; however, the cases of heavily overconsolidation needs further research.

Maximum shear modulus of rigid-soft mixtures subjected to overconsolidation stress history

  • Boyoung Yoon;Hyunwook Choo
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.443-452
    • /
    • 2024
  • The use of sand-tire chip mixtures in construction industry is a sustainable and environmentally friendly approach that addresses both waste tire disposal and soil improvement needs. However, the addition of tire chip particles to natural soils decreases maximum shear modulus (Gmax), but increases compressibility, which can be potential drawbacks. This study examines the effect of overconsolidation stress history on the maximum shear modulus (Gmax) of rigid-soft mixtures with varying size ratios (SR) and tire chip contents (TC) by measuring the wave velocity through a 1-D compression test during loading and unloading. The results demonstrate that the Gmax of tested mixtures in the normally consolidated state increased with increasing SR and decreasing TC. However, the tested mixtures with a smaller SR exhibited a greater increase in Gmax during unloading because of the active pore-filling behavior of the smaller rubber particles and the consequent increased connectivity between sand particles. The SR-dependent impact of the overconsolidation stress history on Gmax was verified using the ratio between the swelling and compression indices. Most importantly, this study reveals that the excessive settlement and lower Gmax of rigid-soft mixtures can be overcome by introducing an overconsolidated state in sand-tire chip mixtures with low TC.

The Analysis of Soil Behaviour by Double Surface Work-hardening Constitutive Model (복합항복면 일-경화구성 모델을 이용한 지반거동해석)

  • Youn, Il-Ro;Oh, Se-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • Decomposed granite soils are in a wide range of conditions depending on the degrees of weathering. This paper is intended to examine laboratory tests such as consolidation tests and conventional triaxial compression tests conducted in order to find out the mechanical properties of Cheongju granite soil. Along with the foregoing, the results of basic physical tests conducted in order to grasp the physical properties of Cheongju granite soil were described and based on the results, methods to calculate the mechanical parameters of numerical approaches using Lade's double surface work-hardening constitutive model were examined. Finally, it is intended to explain the stress properties of Cheongju granite soil used as a geotechnical material based on its shear behavior and critical state concept using the results of isotropic consolidation tests and triaxial compression tests. As a conclusion, it can be seen that in the relationship between confining stress and maximum deviator stress, the slope is maintained at a constant value of 2.95. In the drained CTC test, maximum deviator stress generally existed in a range of axial strain of 6~8% and larger dilatancy phenomena appeared when confining stress was smaller. Finally, based on the results of the CTC tests on Cheongju granite soil, although axial strain, deviator stress and pore water pressure showed mechanical properties similar to those of overconsolidated soil, Cheongju granite soil showed behavior similar to that of normally consolidated soil in terms of volumetric strain.

An Analysis of Flat DMT Penetration Based on a Large strain Formulation (대변형을 고려한 flat DMT의 3차원 관입 해석)

  • Byeon, Wi-Yong;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.67-76
    • /
    • 2007
  • Flat DMT penetration was analyzed using a finite element model based on a large strain formulation. The ABAQUS/Explicit, a commercial finite element method, was used to study the flat DMT penetration in soils. Then, because the very large mesh distortion occurred due to the penetration of flat DMT, the adaptive meshing technique was utilized to maintain a high quality mesh configuration. The undrained shear strength obtained from the flat DMT is estimated using only the horizontal stress index ($K_{D}$) and so it became necessary to examine using the analysis results obtained from the penetration of the flat DMT. Analysis results show that in normally consolidated region of $K_{D}=2$, the results obtained from the correlations proposed by Marchetti show good agreement with those estimated from the finite element method. The present analysis also shows that in overconsolidated region of $K_{D}>2$, the results obtained from the relationships proposed by Kamei and Iwasaki show good agreement with those provided by the penetration analysis.